

Custom Designed Ovens & Furnaces up to 3000°C

Science for Solids

Materialography
Hardness Testing
Heat Treatment
Elemental Analysis
Milling & Sieving

Particle Analysis

As part of the VERDER Group, the business division VERDER SCIENTIFIC sets standards in the development, manufacture and sales of laboratory and analytical equipment. The instruments are used in the areas of quality control, research and development for sample preparation and analysis of solids.

www.verder-scientific.com

Leading Heat Technology

The Carbolite Gero brand is synonymous with high quality, leading heat technology in the design and manufacture of laboratory and industrial ovens and furnaces ranging from 30 °C to 3000 °C and sold globally to over 100 countries.

On 1st January 2016 Carbolite (UK) and Carbolite Gero (Germany) joined to become one company under the name of Carbolite Gero. With the combined product lines the company will strengthen its market position locally and globally. In the past, both companies gained strong, established reputations for engineering expertise in applied heating technology.

Carbolite Gero has two manufacturing and sales sites. One is based in Derbyshire, United Kingdom, where Carbolite has been manufacturing laboratory and industrial ovens and furnaces up to 1800 °C since 1938; the second facility is located in Neuhausen, southern Germany, where high temperature furnaces up to 3000 °C with a large variety of solutions for vacuum and other modified atmospheres have been manufactured since 1982.

In addition to the wide range of standard products as shown in this catalogue, Carbolite Gero is an expert in the development of customized equipment for complex heat treatment processes. Solving customers' individual application requirements has given Carbolite Gero an important place in aerospace, engineering, materials science, heat treatment, medical, bioscience and contract testing laboratories globally to name a few. Not only can Carbolite Gero supply products with Standards-compliant furnace and oven designs (eg, Nadcap heat treatment processes (AMS2750E)), but also fully traceable certification for control, measurement, recording and data acquisition devices, issued by an independent UKAS accredited laboratory.

All products, and more, featured in this catalogue are available through your local Carbolite Gero office or an extensive network of dealers and local sales organisations.

www.carbolite-gero.com

This catalogue shows the details of some of the custom built design solutions that Carbolite Gero has supplied to many customers to solve their particular heating requirements. Carbolite Gero has a well proven history of adapting its comprehensive range of standard products and also of designing and building complete custom solutions.

About us	3
Content	4 - 5
Common modifications	6 - 7
Icons used in this catalogue	6
Nadcap	8 - 9
Examples of modified and customised products	10 - 75
Ovens from 30°C – 750°C	10 - 27
Chamber Furnaces up to 1800°C	28 - 43
Tube Furnaces up to 1800°C	44 - 67
Vacuum Chamber Furnaces up to 3000°C	68 - 75

Carbolite Gero ovens typically have metallic chambers with temperatures up to $750\,^{\circ}\text{C}$

INTRODUCTION / OVERVIEW OF COMMON MODIFICATIONS	12
OVENS - MODIFICATION EXAMPLES	
PF 120 fan oven for Nadcap compliance	13
LHT 5/60 with sliding tray	13
High temperature oven for auto ignition testing	14
GP 450A general purpose oven for Nadcap compliance	14
GP 450A general purpose oven with rotating mechanism	15
Large general purpose oven 2/1750 with electric door and loading trolley	15
Large general purpose oven 2/1750 with reinforced slide-out shelves	16
LGP 4/1750 general purpose oven with rotary hearth	16
LGP 6/3920 general purpose oven adapted for rapid quenching	17
LGP 2/4872 general purpose oven for drying powders with low auto ignition temperature	17
LGP 3/1500 general purpose oven for curing vacuum bagged composites	18
LGP $6/1000$ general purpose oven for sterilising & depyrogenation of bottles	18
High temperature oven for carbon fibre fabric treatment	19
HTMA high temperature modified atmosphere oven with custom built dimensions	19
HTMA 5/4872 high temperature modified atmosphere oven for processing powders with low auto ignition temperature	20
HTMA 6/95 high temperature modified atmosphere oven with continuous sample weighing	20
CR/450 clean room oven to fit into a clean room wall	21
HRF 7/324 high temperature air recirculation oven with vertically opening door	21

OVENS - CUSTOM BUILT EXAMPLES	
High performance oven with rotating shaft	22
Custom built GP 2/900 chamber oven	22
Triple oven system	23
Fan oven with 6 letterbox doors	23
Short form dewar flask oven	24
HPLC column oven with 6 access ports	24
Top & front loading oven	25
Top loading oven with rotating headstocks	25
Mesh belt oven	26
HTCR 4/232 high temperature clean room with front and back entry	26
3 AMS 2750E vertical high temperature ovens with cabinet	27
Drop bottom quench oven	27

Chamber furnaces heat above $750\,^{\circ}\text{C}$ and usually have ceramic materials creating the chamber, but may be fitted with metallic retorts where process gases are required.

INTRODUCTION / OVERVIEW OF COMMON MODIFICATIONS	30
CHAMBER FURNACES - MODIFICATION EXAMPLES	
LCF 12/540 large chamber furnace with roller hearth & 3 zone control	31
LCF 12/560 large chamber furnace for Nadcap compliance	31
Floor mounted 13/131 general chamber furnace	32
RHF 14/35 rapid heating chamber furnace with element protection and electric door actuation	32
16/3 bottom loading cycling furnace	33
BLF 17/3 bottom loading furnace with horizontal movement hearth	33
BLF 17/3 bottom loading furnace with rotary hearth	34
CHAMBER FURNACES - CUSTOM BUILT EXAMPLES	
GPC general purpose chamber furnace to fit into a clean room wall	34
Large chamber furnace with circulation fan and loading system	35
Debinding furnace with retort & forced cooling	35
Graphite thermal oxidation test furnace	36
Chamber furnace with retort to fit in a glovebox	36
3 zone top loading furnace with retort [AMS2750E class 4, type B]	37
Debinding & sintering furnace with retort & press	37
Twin bogie elevator hearth furnace	38
1800 °C elevator hearth furnace	39
Thermal cycling calibration furnace	39
Top hat furnace system with twin retorts	40
3 zone top hat furnace [AMS2750E class 4, type B]	41
Retort carbonisation furnace with atmosphere gas controls	41
Four lane strand furnaces for hardening and tempering	42
Eight lane strand furnace	43
AMS2750E mesh belt conveyor furnace	43

These furnaces are tubular in format. They may contain a work tube which could contain a process gas, and could be a split construction to close around a work piece.

INTRODUCTION / OVERVIEW OF COMMON MODIFICATIONS

TUBE FURNACES - MODIFICATION EXAMPLES	
AZ – eight-zone tube furnace up to 1300°C	47
4 x GHA 12/450 modular horizontal tube furnaces in a rack system	47
GVA 12/125/150 modular vertical chamber furnace	48
Standard tube furnace HTRH-3 18/100/600 on custom stand with castors	48
TUBE FURNACES - CUSTOM BUILT EXAMPLES	
Bespoke assembly of 6 vertical MTF 9/25/250 tube furnaces	49
Twin 2 x MHC 12/230/450 modular horizontal tube furnaces in a rack with gas system	49
MTF 15/5/100 mini tube furnace with platinum alloy heating element	50
TZF 12/38/400 3-zone calibration tube furnace with automated loading	50
Vertical FHA 13/50/200 with water tank for sample quenching	51
Vertical FHA 13/80/500 with manual sample movement under controlled atmosphere	51
3 x FHA 13/80/500 tube furnaces in safety cabinet	52

, ,	
TZF 12/38/400 3-zone calibration tube furnace with automated loading	50
Vertical FHA 13/50/200 with water tank for sample quenching	51
Vertical FHA $13/80/500$ with manual sample movement under controlled atmosphere	51
3 x FHA 13/80/500 tube furnaces in safety cabinet	52
ACT 13/360 air cooled calibration tube furnace	52
Cycling corrosion test furnace with gas system	53
Standard HTRH 16/100/600 tube furnace up to 1600°C, attached to an inert gas glove box for loading and unloading the furnace under an inert gas atmosphere	53
Custom made HTRV $16/100/4000$ tube furnace up to 1600° C, attached to an inert gas glove box for vertical heat treatment of fibres under an inert gas atmosphere	54

Custom designed graphite tube furnace 3 heating zones and inert gas counter flow flanges for the heat treatment of carbon fibres up to 1800 °C

SPLIT TUBE FURNACES - MODIFICATION EXAMPLES	
VST 12/50/150 vertical split tube furnace with element protection	55
2 x TVS 12/90/900 vertical split 3-zone tube furnaces in tandem on a mounting frame	55
EST 12/38/150 split tube furnace with L stand	56
Compact split tube furnace for wire drawing	56
Horizontal split tube furnace FZS 13/100/4500 for heat treatment of long metal parts	57
Split tube furnace FST 9/150/750 with special end insulation	57
Split tensile test furnace with extensometer access	58
Split tensile test furnace with viewing windows	59

SPLIT TUBE FURNACES - CUSTOM BUILT EXAMPLES	
Split chamber furnace with viewing windows	59
Split chamber furnace to fit into a hydraulic press	60
M-Range vertical split tube furnaces	60
High temperature split 3-zone tube furnaces	61

ROTATING TUBE FURNACES - MODIFICATION EXAMPLES	
HTR 6/100/350 rotary reactor tube furnace with stainless steel reaction vessel	62
STF 16/610 hign temperature single zone tube furnace with rotating and tilting mechanism	63
HZS 12/75/900 with rotating and tilting mechanism	63

Due to the nature of custom design solutions you will find some products don't fit neatly into these groups.

ROTATING TUBE FURNACES – CUSTOM BUILT EXAMPLES	
2 x twin HTR 11/75 rotary reactor tube furnace – total of 4 vessels	64
HZS 12/75/900 horizontal split 3-zone tube furnace with rotating and tilting mechanism	65
HZS 12/120/1200 horizontal split 5-zone tube furnace with rotating and tilting mechanism	66
3-zone split 13/120/1400 with rotating and tilting mechanism	67
3-zone split 8/300/1500 with rotating and tilting mechanism	67

Vacuum Furnaces up to 3000°C

The furnace in this section can operate with vacuum, partial pressure, air, controlled pressure, and overpressure environments. The equipment can be used with inert gases such as argon or nitrogen, and also reactive gases such as hydrogen or oxygen.

INTRODUCTION / OVERVIEW OF COMMON MODIFICATIONS	70
VACUUM CHAMBER FURNACES – CUSTOM BUILT EXAMPLES	
GLO 120/09-2G up to 900°C, with loading fork lift	71
GLO 120/11-3G up to 1100°C with special drawer door	71
HBO 60 MO/13 -5G up to 1300 °C with special humidifier	72
LHTG 100-200/16 with sample charging	72
HTK 25 MO/16-1G with attached glovebox	73
HTK 600 GR/16-1G up to 1600°C for debinding and sintering	73
HTBL 400-300/11-2G up to 1100°C	74
High pressure furnace LHTG 200-300/18-1G up to 1800 °C at 100 bar	75

All Carbolite Gero ovens and furnaces have excellent temperature control provided by a range of sophisticated digital controllers. Comprehensive data logging and connection to computers and networks is available together with remote webpage access.

TEMPERATURE & SYSTEM CONTROL	78 - 81
INDEX	82

Disclaimer

As Carbolite Gero has a policy of continuous product development, improvements and changes will be made during the lifetime of this catalogue. Carbolite Gero reserves the right to amend the specifications at any time and in any particular way without prior notice provided that the ultimate performance of the equipment is not reduced by such action.

If the dimensions or technical specification of a product in this catalogue are critical, it is important that Carbolite Gero is contacted to confirm the details prior to order placement.

Carbolite Gero can provide custom solutions in one of two ways:

- Product is a modification of a standard product.
- 2. Product is custom designed to provide a customer specific process solution.

Listed to the right are some common modifications to the standard range of products that are frequently requested.

Icons used in this catalogue

Icons are displayed against products that feature these details

Product is a modification of a standard product.

Product is custom designed to provide a customer specific process solution.

Product conforms to aerospace Nadcap AMS2750E.

Product incorporates zoned temperature control. The number represents the number of heated zones.

Product incorporates safety systems. Example: gas safety systems.

Product incorporates atmosphere control systems.

Product incorporates a sealed work environment and vacuum system.

Product incorporates forced cooling systems. Examples: Blowers with automatic damper settings, lifting roof panels.

Product incorporates rotary motion. Example: rotating tube furnace or rotary hearth.

Product incorporates vertical motion. Examples: elevator hearth and top hat furnaces.

Product incorporates horizontal motion. Examples: tube furnaces on rails, automatic thermocouple loading for calibration.

Product incorporates equipment for loading and unloading work pieces.

Common modifications

for all products

Fans

To reduce cooling time and to move ambient air through the hot zone or around the hot zone if an atmosphere is to be maintained

(See examples on pages 14, 17, 18, 20, 27, 35, 37, 38, 39, 41, 43, 51, 52)

Mechanical changes

To fit with customers' equipment (See examples on pages 13, 15, 22, 23, 25, 27, 60)

 Instrumentation and performance validation for aerospace standard AMS2750E

(See examples on pages 13, 14, 15, 21, 23, 27, 31, 35, 37, 41, 43)

Atmosphere control packages which could include:
 Multiple gas inlets; multiple flow meters with manual
 flow adjustment; mass flow controller with manual
 adjustment; mass flow controller with automatic
 adjustment; pressure sensing of gas or mass flow
 control to sense gas flow; gas solenoid valves manually
 or automatically switched; solenoid valves to change
 rate of flow; gas flow solenoids interlocked to process
 parameters

(See examples on pages 19, 20, 35 - 37, 40 - 43, 47, 49, 51 - 54, 56, 62 - 67, 71 - 75)

- Gas pre-heating
- Inputs and outputs

To link temperature controllers to customers' automated equipment

· Higher power heating elements

To increase heating rate and to reduce heat up time

More common modifications

for ovens

Access ports

For thermocouple access; for cable entry to parts under test; to give custom shaped access ports for customers' equipment; ports to quickly load and unload small parts into ovens

- Customer specified shelf locations
- Heavy duty shelves and runners
- Viewing windows
 Using borosilicate glass;
 for viewing and optical
 temperature measurement
- Sliding drawers in doors
- Vertical lifting doors
- Motorised doors
- Door interlocks
 Automated door locking with the temperature, or with the temperature program
- Door switch
 To switch off circulation fans and heating elements
- Chambers extended in one dimension
 Can often be a simpler modification than changes to all three dimensions
- Custom dimensions for chambers
- Interior chamber construction From alternative grades of stainless steel
- Reinforced base
- Bases modified for trolley access
- Loading trolleys
- Flange mounts
 For fitting to walls in clean rooms
- Multiple temperature zone control
- Programmable vacuum / partial vacuum & extraction
- Spark-proof chamber
- Oxygen measurement of oven atmosphere

for chamber furnaces

- Access ports
 For thermocouple access;
 - ports to quickly load and unload small parts
- Viewing windows
 For higher temperature capability using quartz or sapphire: for viewing and optical temperature measurement. Can be applied to: HTR rotary reactor, chamber furnace doors
- Door interlocks
 Automated door locking with the temperature, or with the temperature program
- Chambers extended in one dimension
 Can often be a simpler modification than changes to all three dimensions
- Custom dimensions for chambers
- Reinforced chamber hearth
- Loading trays and racks in stainless steel or nickel chromium alloy (Inconel)
- Furnace heating element protection
 Silicon carbide protection tiles for chamber furnaces
- Heating elements located under the hearth

For improved temperature uniformity

- Multiple temperature zone control
- Programmable vacuum / partial vacuum & extraction
- Loading trolleys
- Flange mounts
 For fitting to walls in clean rooms
- Motorised doors

for tube furnaces

- Access ports
 Small diameter tube perpendicular to work tube
- Viewing windows
 For higher temperature capability using quartz or sapphire: for viewing and optical temperature measurement. Can be applied to: tube furnace end seals, tube furnaces perpendicular to a quartz work tube, exit end of rotating tube furnaces
- Tube furnace custom heated lengths and diameters

longer heated lengths; shorter heated lengths; larger diameter versions > 200 mm

 Multiple temperature zone control

Zone barriers in tube furnaces with modular vacuum formed elements including non-split tube furnaces EHC, EVC, GHC, GVC & split tube furnace EZS, EVZ, HZS, TVS

 Tube furnace equalisation block to improve temperature stability and uniformity

for vacuum chamber furnaces

- Special atmosphere with dangerous and reactive gases can be modified to work with H₂, CO, CO₂, H₂S, H₂O, CH₄ or C₂H₄ with full safety features. Other gases on request.
- Debinding and sintering equipment

Binder removed chemically or through heat treatment followed by the sintering process. Carbolite Gero offers several debinding and sintering solutions for the MIM process. All gaseous by-products produced during debinding are combusted by the integrated afterburner.

Ultra-high vacuum heat treatment

Atmospheric change is required for all heat treatment processes where oxidation is unacceptable. For fine vacuum levels, pre-pumps are combined with roots pumps. For high vacuum operation, additional turbomolecular pumps are used. Vacuum in the range 5 x 10⁻⁵ mbar to 5 x 10⁻⁶ mbar or better can be achieved.

- Partial pressure control
 Gas is introduced into
 the furnace chamber at a
 constant flow controlled by
 the mass flow controller.
 At a specified furnace
 pressure, e.g. 80 mbar, a
 PID controlled regulating
 valve opens and gases are
 sucked out of the furnace
 to achieve the target
 pressure.
- Fast cooling

The fast cooling system removes hot process gas from the unit, cools the gas via a heat exchanger, and pumps the cooled gas back into the furnace.

Glove box

Customized glove box furnace systems for tube furnaces up to 1800°C and chamber furnaces up to 3000°C.

Carbolite Gero's expertise in pyrometery and the application of AMS2750E

Created by the Performance Review Institute, the Nadcap programme is designed to provide an accreditation and quality assurance framework for a defined range of 'special processes and products' that are used within the Aerospace and Defence sectors. It was originally sponsored by Boeing and is now adopted by all Western aerospace manufacturers.

Nadcap is becoming increasingly important in the aerospace sector with accreditation frequently being requested by companies such as: GE Aviation, Rolls Royce plc, MTU, Snecma, Turbomeca, Boeing, Vought Aircraft Industries, Bombardier, Honeywell,

Hamilton Sundstrand and Sikorsky Aircraft.

Manufacturers and end users must follow the requirements of the SAE Aerospace Standard Number AMS2750E. In this Standard ovens and furnaces are classified by their temperature uniformity and the type of control instrumentation that they use.

Carbolite Gero has significant expertise in supplying aerospace customers with ovens and furnaces designed for full Nadcap compliance.

Some examples are shown on the following pages identified by this AMS icon.

What is Nadcap?

National Aerospace and Defence Contractors Accreditation Programme

A quality system for aerospace manufacturers and subcontractors controlled through audited standards.

Other standards aligned within Nadcap

- Aerospace Standard AS7102 Ref A
- Audit Control AC 7102 Rev B
- Rolls Royce standard RPS 953 issue 12

For product to conform with AMS2750E the following have to be defined:

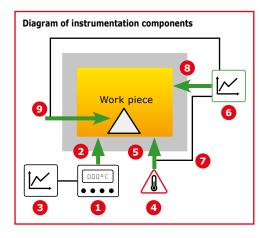
- 1. Temperature range of compliance
- 2. Class of temperature uniformity required either Class 1, 2, 3, 4, 5 or 6
- 3. Temperature Instrumentation type either Type A, B, C, D or E see diagram on the next page
- 4. Uniform zone required define H x W x D
- 5. Temperature Uniformity Survey (TUS) required either with charge or empty chamber
- 6. System Accuracy Test (SAT) requirements

Class	Uniformity
1	±3°C
2	±6°C
3	±8°C
4	±10°C
5	±14°C
6	±28°C

For class 1 uniformity, ± 3 °C, the size of an oven chamber needs to be significantly larger than the working volume. If a working volume of 600 mm x 600 mm x 600 mm is required we recommend a chamber volume of at least 800 mm x 800 mm.

Examples

See page 14



See page 23

Product instrumentation 'Type'

Control instrumentation type is defined as Type A, B, C, D or E. The differences between these types are shown in the diagram below and relate to the number of recording thermocouples permanently installed in the work-space and the instrumentation used to monitor these.

	Instrumentation components	Type A	Type B	Type C	Type D	Type E
•	Control instrument with temperature display	Х	Х	Х	Х	Х
)	Control sensor	Х	Χ	Х	Χ	Х
)	Control instrument recorder	Х	Х	Х	Х	
	Over-temperature protection instrument	Х	Χ	Х	Χ	
	Over-temperature protection sensor	Х	Х	Х	Х	
	Multipoint chart recorder (or separate channel in control instrument recorder)	Х	Х	Χ		
	High temperature protection sensor connected to multipoint recorder	Х		Х		
	Low temperature sensor connected to multipoint recorder	Х		Х		
	Load sensor connected to multipoint recorder	Х	Х			

Examples of products built to comply with AMS2750E

Model	Max temp. (°C)	Temp. uniformity ±(°C)	AMS2750E uniformity class	AMS2750E instrument. type
PF800	250	5	2	D
PF200	300	5	2	D
PF60	300	5	2	В
PF200	250	5	2	D
GP450A	300	10	4	D
GP450A	300	5	2	D
GP220B	250	6	2	В
LGP2/935	250	6	2	С
LGP2/1212	250	6	2	Α
LGP2/1750	250	5	2	С
LGP4/1419	425	6	2	Α
LGP6/1180 S&C	625	10	4	В
LGP6/1750	625	5	2	С
LGP6/2700	625	6	2	D
3 Oven System: Chamber 1	300	5	2	D
Chamber 2	300	5	2	D
Chamber 3	300	5	2	D
HT4/220	400	6	2	D
HT5/95	500	14	5	В
HT5/350	500	6	2	С
HT6/220	600	6	2	Α
HRF 7/45B	750	6	2	D
HRF 7/45	750	5	2	D
CWF 12/36	1200	10	4	D
CWF 13/65	1300	6	2	D
GPC 12/131	750	5	2	D
LCF 14/350	1400	8	3	D
LCF 12/560	1200	6	2	В

AMS2750E uniformity data for the LGP oven range

	Uniform Volume [mm]									
Model	CLASS 1	CLASS 2	CLASS 3	CLASS 4						
size	(±3°C)	(±6°C)	(±8°C)	(±10°C)						
500	500×500×500	600×600×600	625x625x625	650×650×650						
730	600x600x600	700×700×700	725×725×725	750x750x750						
1000	700×700×700	750x750x750	825x825x825	850x850x850						
1500	1200×700×700	1250×750×750	1300x825x825	1300x850x850						
1750	900x900x900	950x950x950	1025×1025×1025	1050×1050×1050						
2160	1200×900×900	1250x950x950	1325 x 1025 x 1025	1350×1050×1050						
3370	1100×1100×1100	1200x1200x1200	1225 x 1225 x 1225	1250×1250×1250						
CLASS 1: CLASS 2,			ly between this rang	•						
LGP 4: C Temperal CLASS 1:	Operate at a maximu ture Spread: 250°C - 4	um temperature of 4425°C one temp on	125°C Iy between this rang	ge						
CLASS 2,	CLASS 2, 3 & 4: 250 °C - 425 °C -> Two points between this range									
Temperat	perate at a maximu ture Spread:	ım temperature of 6	525°C							
CLASS 1: CLASS 2,	425°C - 6 3 & 4: 425°C - 6		ly between this rang s between this rang							

Examples of custom designed oven solutions

	Page		Page
Ovens - Modification Examples		HTMA 6/95 high temperature modified atmosphere oven with continuous sample weighing	20
PF 120 fan oven for Nadcap compliance	13	CR/450 clean room oven to fit into a clean room wall	21
LHT 5/60 with sliding tray	13	HRF 7/324 high temperature air recirculation oven with vertically opening door	21
High temperature oven for auto ignition testing	14	Ovens – Custom Built Examples	
GP 450A general purpose oven for Nadcap compliance	14	High performance oven with rotating shaft	22
GP 450A general purpose oven with rotating mechanism	15	Custom built GP 2/900 chamber oven	22
Large general purpose oven 2/1750 with electric door and loading trolley	15	Triple oven system	23
Large general purpose oven 2/1750 with reinforced slide-out shelves	16	Fan oven with 6 letterbox doors	23
LGP 4/1750 general purpose oven with rotary hearth	16	Short form dewar flask oven	24
LGP 6/3920 general purpose oven adapted for rapid quenching	17	HPLC column oven with 6 access ports	24
LGP 2/4872 general purpose oven for drying powders with low auto ignition temperature	17	Top & front loading oven	25
LGP 3/1500 general purpose oven for curing vacuum bagged composites	18	Top loading oven with rotating headstocks	25
LGP 6/1000 general purpose oven for sterilising & depyrogenation of bottles	18	Mesh belt oven	26
High temperature oven for carbon fibre fabric treatment	19	HTCR 4/232 high temperature clean room with front and back entry	26
HTMA high temperature modified atmosphere oven with custom built dimensions	19	3 AMS 2750E vertical high temperature ovens with cabinet	27
HTMA 5/4872 high temperature modified atmosphere oven for processing powders with low auto ignition temperature	20	Drop bottom quench oven	27

Ovens from 30°C - 750°C

Carbolite Gero defines an oven as a chamber with a metallic lining operating up to 750 °C, where the heat transfer is predominantly by convection. Carbolite Gero's extensive range of ovens has chamber volumes ranging from 30 to 14000 litres. The following temperature ranges of ovens are available:

- Ambient + 30 °C to 250 °C
- Ambient + 30 °C to 300 °C
- Ambient + 60 °C to 400 °C
- Ambient + 60 °C to 500 °C
- Ambient + 60°C to 600°C
- Ambient + 60°C to 750°C

The majority of Carbolite Gero ovens have chamber circulation fans to mix the air and improve temperature uniformity. Air vents are provided with adjustable dampers to assist with removal of moisture or fumes. All ovens have excellent temperature control provided by a range of sophisticated digital controllers. Comprehensive data logging and connection to computers and networks are available along with remote webpage access.

Carbolite Gero has a comprehensive range of standard ovens which are detailed in the catalogue 'Laboratory & Industrial Ovens & Furnaces' and are available with a number of standard options including: exhaust fans; moisture extraction; stoving and curing featuring an explosion relief panel; variable speed fan; cable entry ports. The standard range of GP and LGP ovens often form the basis of custom oven solutions.

Common oven features

- Highly efficient thermal insulation using a combination of ceramic fibre & mineral wool
- Metallic sheathed mineral insulated rod elements
- Stainless steel interior 430 grade
- · Horizontal airflow via internal circulation fan
- Door closing mechanism using a shoot bolt arrangement
- Fresh air inlet via fan shaft tubes (LGP range)
- Exhaust port with adjustable damper
- · Sophisticated digital temperature control
- Over-temperature protection
- · Solid state power control

Common oven modifications

- Fans: To reduce cooling time and to move ambient air through the hot zone or around the hot zone if an atmosphere is to be maintained
- Mechanical changes: To fit with customers' equipment
- Instrumentation and performance validation for aerospace standard AMS2750E
- Atmosphere control packages which could include:
 Multiple gas inlets; multiple flow meters with manual
 flow adjustment; mass flow controller with manual
 adjustment; mass flow controller with automatic
 adjustment; pressure sensing of gas or mass flow
 control to sense gas flow; gas solenoid valves manually
 or automatically switched; solenoid valves to change
 rate of flow; gas flow solenoids interlocked to process
 parameters
- · Gas pre-heating
- Inputs and outputs: To link temperature controllers to customers' automated equipment
- Higher power heating elements: To increase heating rate and to reduce heat up time
- Access ports: For thermocouple access; for cable entry to parts under test; to give custom shaped access ports for customers' equipment; ports to quickly load and unload small parts into ovens
- Customer specified shelf locations
- Heavy duty shelves and runners

- Viewing windows: Using borosilicate glass; for viewing and optical temperature measurement
- Sliding drawers in doors
- Vertical lifting doors
- Motorised doors
- Door interlocks: Automated door locking with the temperature, or with the temperature program
- Door switch
 - To switch off circulation fans and heating elements
- Chambers extended in one dimension: Can often be a simpler modification than changes to all three dimensions
- Custom dimensions for chambers
- Interior chamber construction: From alternative grades of stainless steel
- Reinforced base
- Bases modified for trolley access
- Loading trolleys
- Flange mounts: For fitting to walls in clean rooms
- Multiple temperature zone control
- Programmable vacuum / partial vacuum & extraction
- Spark-proof chamber
- Oxygen measurement of oven atmosphere

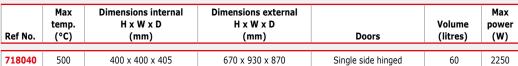
PF 120 fan oven for Nadcap compliance

Twelve chamber ovens were specified for the customer's process rather than one large batch oven. This provided more flexibility for their production and faster throughput of parts. The ovens were stacked 2 high and mounted on frames to minimise the space required.

- 12 x PF 120 ovens mounted onto stacking frames
- All 12 ovens connected via communication to iTools software for monitoring
- Integrated into the customer Nadcap regime

Technical data

Ref No.	Max temp. (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Doors	Volume (litres)	Max power (W)
712273	300	500 x 490 x 520	670 x 865 x 670	Single side hinged	127	2000


(i) Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

LHT 5/60 with sliding tray

This oven is fitted with a customised sample loading tray which enables the insertion of samples into the chamber without opening the door. This feature minimises heat loss and means that recovery of oven temperature after insertion of the sample is much more rapid. For customers testing painted sheets of metal the stoving and curing options would be added.

- For loading and unloading with minimal temperature drop
- Usable tray dimensions: 10 mm high x 265 mm wide x 425 mm deep

Technical data

High temperature oven for auto ignition testing

This bench mounted high temperature forced air circulation oven fitted with two removable stainless steel shelves, has been modified to enable it to be used for auto ignition tests.

A single front door opens through 180° and a solitary roof port allows a test sample to be fed in to an internally mounted flask.

There is also a roof-mounted gas exhaust with a manually adjustable closure plate. The oven has been fitted with an air inlet blower to ensure rapid cooling when required.

- Eurotherm 3508P1 Temperature Controller
- Eurotherm 2132 Over Temperature protection
- · Upgraded for ASTM E659 testing

Technical data

Ref No.	Max temp. (°C)	Temperature uniformity (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Weight (kg)
738843	600	±5	300 x 300 x 325	580 x 855 x 555	73

Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

GP 450A general purpose oven for Nadcap compliance

This is an example of a standard product that has been modified to allow use in the aerospace industry. The working volume and uniformity class must be specified along with the instrumentation type. Modifications include thermocouple access ports to make temperature uniformity survey possible along with a panel mounted thermocouple connection loop to simplify instrument calibration. See page 8 for more information regarding Nadcap and AMS2750E.

- Oven used for drying components used in the aerospace industry
- System accuracy test (SAT) port through the door
- Thermocouple connections with plug and socket arrangement accessible on the control panel for ease of re-calibration
- Forced airflow via internal circulation fan with speed control

Technical data

Ref No.	Max temp. (°C)	Temp uniformity (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Doors	Volume (litres)	Max power (W)
705934	300	±6°C @50 to 300	1270 x 600 x 600 Uniform volume 920 x 410 x 410	1910 x 900 x 840	Single side hinged	450	6000

GP 450A general purpose oven with rotating mechanism

This is a good example of a mechanical modification of a standard product. In this case the customer required continuous agitation of their samples. The samples are simply clipped onto the fixtures which rotate once the oven door is closed. The fixtures can be rotated slowly with a manual push button to the correct positions to load the samples.

- \bullet Testing corrosion inhibitors used in the petroleum industry between 60 and 120 $^{\circ}\text{C}$
- Rotating mechanism to accept 20 of the customer's reactors on two shafts, directly driven via motor and gearbox
- Independent adjustable rotation speed in the range 1 to 10 revolutions per minute.
- Door closing mechanism using shoot bolt with interlock to stop rotation of mechanism when the door is open
- Manual override to allow shaft to rotate slowly for loading and unloading
- Forced airflow via internal circulation fan with speed control

Technical data

	Ref No.	Max temp. (°C)	Temp. uniformity (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Doors	Volume (litres)	Max power (W)
Ī	727251	300	Better than ±8°C	1220 x 610 x 610	1850 x 1100 x 850	Single side hinged	450	6000

Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

Large general purpose oven 2/1750 with electric door and loading trolley

This LGP for heat treating steel elements has a 1750 litre chamber and is compliant to Nadcap 2750E Class 2, Type D. The door opens vertically using a counterweighted electrical lifting system and the loading trolley with rollers clamps to the oven for safe loading and unloading of up to 500 kg of components.

The oven heats to 250 °C when empty and then another 40 minutes to return to that when loaded. It was supplied with a loading tray for components up to 500 kg and three additional removable shelves each capable of supporting 20 kg.

- Eurotherm Nanodac controller and recorder
- Eurotherm 3216 over-temperature controller
- Type "K" Thermocouples calibrated at 60 °C, 155 °C and 250 °C
- Air circulation via fan impellers with exhaust vent and adjustable butterfly damper

Technical data

Ref No.	Max. temp. (°C)	Temp. stability (°C)	Temp. uniformity (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Volume (litres)	Weight (kg)
734283	250	±1	±5	1230 x 1240 x 1405	3500 x 2100 x 1600	1750	1800

Large general purpose oven 2/1750 with reinforced slide-out shelves

This LGP 2/1750 has been designed to the automotive customer's requirements with two perforated stainless steel slide-out shelves and a single hinged door fitted with a high-quality silicone seal. The oven has two type "K" load thermocouples to trigger independent soak timing.

With a maximum operating temperature of 250 °C the oven has a normal operating temperature range between 190 °C and 220 °C with better than ± 0.5 °C temperature stability under steady state conditions.

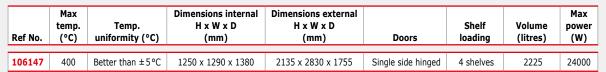
- · Single control zone
- Two sliding shelves can pulled out 1000 mm and holds 50 ka
- Forced air circulation with exhaust vent and manual butterfly damper
- Eurotherm 3508P1 digital time/temperature controller

Technical data

Ref No.	Max. temp. (°C)	Temp. stability (°C)	Temp. uniformity (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Volume (litres)	Weight (kg)
733633	250	±0.5	±10	1200 x 1200 x 1150	1600 x 2030 x 1450	1750	1500

i Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

LGP 4/1750 general purpose oven with rotary hearth



Designed to ensure that all customer's parts placed in the oven should see the same temperature profile, with a tight tolerance. A rotating hearth and frame move the parts continuously within the chamber whilst they are processed.

- Sintering of moulded PTFE components used in the aerospace and subsea applications
- Rotating hearth assembly with variable speed drive nominal rotating speed 0.5 revolution per minute
- Rotary hearth ensures components are heated as uniformly as possible
- Heating elements interlocked to circulation fan so heating only takes place if the fan is running
- Ø 200 mm exhaust port with adjustable damper
- Fresh air inlet via fan shaft tubes
- Exhaust fan
- Forced cooling via inlet blower automatically started at the end of a temperature program cycle.
 Dampers automatically opened

Technical data

LGP 6/3920 general purpose oven adapted for rapid quenching

Modified to allow a basket of components to be removed and quickly quenched. It is used in the aluminium heat treatment industry for solution heat treatment. The modifications include an electrically actuated door and basket runners mounted on the hearth.

- Solution heat treatment of aluminium
- Basket runners allow components to be quickly removed and dropped into the quench tank
- · Also used for precipitation hardening
- One piece fully counterbalanced electrically operated door
- · Exhaust port with adjustable butterfly damper
- All controls are located in a separate free standing control panel.

Technical data

Ref No.	Max temp. (°C)	Temp. uniformity (°C)	Uniformity dimensions H x W x D (mm)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Volume (litres)	Max power (W)
80997	600	±5°C between 120 - 550°C	1200 x 1200 x 1800	1400 x 1400 x 2000	2828 x 3071 x 2593	3920	54000

Please note: Uniformity - empty chamber in steady state conditions after a stabilisation period

LGP 2/4872 general purpose oven for drying powders with low auto ignition temperature

Designed for drying powdered materials with low auto ignition temperature. The control system includes a comprehensive over-temperature system that monitors both chamber and element surface temperatures to ensure they remain below the auto ignition temperature. Materials are loaded onto trays which are supported on loading racks. The loading racks are placed on wheeled bogies for ease of movement. Loading racks and bogies were supplied with the oven. There is access under the oven for the stacker truck used to loading and unloading.

- Ovens for drying lightweight materials including pellets and powders
- 3504P25 controls temperature, time, cooling and fan speeds. The fan speeds are pre-set for each program
- Door closing mechanism with electrical interlocking
- Ø 150 mm exhaust port with adjustable damper
- 3000 litre per minutes exhaust fan
- Forced cooling via inlet blower automatically started by the temperature program cycle.
 Dampers automatically opened.
- Horizontal airflow via internal circulation fans with speed control

Technical data

Ref No.	Max temp. (°C)	Temp. uniformity (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Doors	Shelf loading	Max power (W)
724765	150	Better than ±5°C @ 105°C	2100 x 1600 x 1660 Uniform volume 1700 x 1400 x 1250	1360 x 2180 x 2300	Two side hinged	17 shelves on removable racks	36000

LGP 3/1500 general purpose oven for curing vacuum bagged composites

This oven is an increased width version of the LGP range. The shape profile was required to suit the composite components manufactured in the F1 racing industry. The composite components can be placed in vacuum bags, which are then placed in the oven for curing under vacuum.

- Heat treatment of components used in the Formula 1 racing industry
- Vacuum bagged composite materials processed in the oven
- Extraction fans used as part of a controlled cooling profile
- Tight uniformity specification
- Horizontal forced air circulation via internal rear mounted fans
- · Powerful exhaust fan

Technical data

Ref No.	Max temp. (°C)	Temp. uniformity (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Doors	Shelf loading	Volume (litres)	Max power (W)
704438	300	Better than ±5°C @ 105°C	1050 x 1540 x 1040	1940 x 2110 x 1990	Double door	2 shelves 4 positions	1680	18000

Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

LGP 6/1000 general purpose oven for sterilising & depyrogenation of bottles

The Environment Agency in the UK is responsible for testing water from rivers and canals. The 1 litre glass bottles used for the samples must go through a sterilisation and depyrogenation cycle. This oven was modified to provide trolley and runners to suit the bottle carriers. An additional programmed exhaust/cooling fan allows the bottles to be cycled as quickly as possible without breakages being caused due to thermal shock.

- 200 bottles are loaded into baskets and placed on a trolley rack system
- Baskets pushed onto basket runners in the oven chamber
- Internal basket support frame
- Custom designed bottle carriers
- Heating elements interlocked to circulation fan so heating only takes place if the fan is running.
- · Program controlled exhaust/cooling fan

Technical data

Ref No.	Max temp. (°C)	Temp. uniformity (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Doors	Shelf loading	Volume (litres)	Max power (W)
704219	600	Better than ±5°C	1000 x 1000 x 1000	1600 x 2060 x 1660	Single door	Custom basket and support frame	1000	22000

High temperature oven for carbon fibre fabric treatment

This 6/220 High Temperature Oven with a single hinged front door is used for batch production in a light industrial environment. 500 mm x 20 mm side openings on either

side of the oven with sliding covers and insulating plugs allow carbon fibre to be pulled through the heated chamber.

Forced air circulation via a rear-mounted fan ensures outstanding temperature stability and uniformity throughout eh chamber and the oven benefits from manual venting with an adjustable closure plate in the roof of the chamber.

- Eurotherm 301 digital PID time / temperature controller
- 3 perforated stainless steel internal shelves fitted
- Fabric fed at 5 cm/min
- 36 mm cable / TUS port in roof accommodates thermocouples

Technical data

Ref No.	Max temp. (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Max Power (W)	Weight (kg)
732340	600	610 x 610 x 610	1160 x 1030 x 1280	6000	305

HTMA high temperature modified atmosphere oven with custom built dimensions

The HTMA range of products is often modified to provide capacities greater than the standard range. A number of the more popular sizes are listed in the table below. All are fully seam welded to contain modified atmospheres and can have manual or automatic gas control.

 All the standard and options features of the HTMA range are available

Technical data

Ref No.	Model	Max temp. (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Shelves fitted/ accepted	Shelf loading each/total (kg)	Volume (litres)	Max power (W)
717744	HTMA 5/2000	500	1150 × 1400 × 1350	2105 × 2210 × 2310	3 / 4	50 / 200	2000	48000
725426	HTMA 5/4872	500	2100 × 1600 × 1450	3055 × 2410 × 2410	3 / 8	50 / 400	4872	81000
718176	HTMA 6/350	600	700 × 700 × 700	1650 × 1700 × 1200	3 / 4	10 / 40	350	9000
707464	HTMA 6/1000	600	1000 × 1000 × 1000	2200 × 2200 × 1500	3 / 4	50 / 200	1000	22000
712620	HTMA 6/1200	600	1000 × 1000 × 1200	2200 × 2200 × 1850	2 / 4	50 / 200	1200	24000

HTMA 5/4872 high temperature modified atmosphere oven for processing powders with low auto ignition temperature

This high temperature oven is used to dry and process powdered materials with low auto ignition temperature. The control system includes a comprehensive over-temperature system that monitors both chamber and element surface temperatures to ensure they remain below the maximum allowed, and includes a safety nitrogen quench. Fan speed is adjustable to avoid movement of the powdered material and atmosphere control allows use of air, inert nitrogen, or reducing nitrogen +5% hydrogen.

 A Eurotherm 3504P25 controls temperature, time, cooling, moisture extraction and fan speeds

- A load monitoring thermocouple is used to control the sample temperature via a cascade control system
- The circulation fan speeds are automatically controlled during the process
- · Gas-tight construction, seam welded stainless steel interior
- Process gases each have digital mass flow control and automatic switching
- Cooling channels with speed-controlled fans run outside the chamber and do not compromise the process atmosphere
- Nitrogen injection can be used to reduce the cooling time if required
- Over-pressure relief valves
- · Horizontal airflow via three internal circulation fans
- Automatic door locking mechanism using a shoot bolt with electrical interlocking

Technical data

Ref No.	Max temp. (°C)	Temp. uniformity (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Doors	Shelf loading	Volume (litres)	Max power (W)
725426	500	±10°C @ 105 to 500	2100 x 1600 x 1450 Uniform volume 1700 x 1400 x 1250	2655 (+ 400 for exhaust) x 2410 x 2410	Single side hinged	17 shelves on removable racks	4872	81000

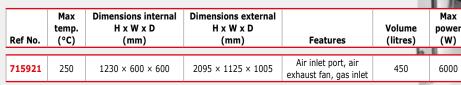
Please note: Uniformity - empty chamber in steady state conditions after a stabilisation period with extraction fan off and optimised fan speeds

HTMA 6/95 high temperature modified atmosphere oven with continuous sample weighing

Modified to allow the weight of the sample placed inside to be constantly monitored. A tray is suspended from a top mounted weighing balance through a liquid seal so that the atmosphere is contained inside the oven. Organic materials are removed from the sample until a constant weight is achieved. Both temperature and weight are logged using iTools software.

- Balance communication with temperature controller for data logging of temperature and weight
- Samples may be weighed during the heating process
- Gas tight for use with inert atmosphere
- Inert gas inlet
- Air circulation via natural convection
- Exhaust port with connection flange

Technical data


CR/450 clean room oven to fit into a clean room wall

A modified clean room oven suitable for operation within a clean room environment. When installed the oven is built into the wall of the clean room. Air is drawn from the clean room

interior, circulated within the oven and then exhausted to the environment outside the room. The oven is used for the drying of materials used in the manufacture of synthetic bone allografts.

- Fully sealed low thermal mass insulation to avoid shedding fibres
- · Fully enclosed brushless fan motor
- Perforated stainless steel shelves
- Particle free silicone rubber door seal
- Membrane control panel with clear bright LED display
- · Air exhaust fan
- Gas inlet

Technical data

(i) Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

This oven features a mechanical modification to a standard HRF oven. The door has been changed from the standard side opening door to a vertical lift door. This was required by the customer to work with their material handling systems and to save working space.

- Fully compliant with the SAE Aerospace standard AMS2750E See page 8 for more details
- Audible and visual alarm, complete with status indicator

Technical data

Ref No.	Max temp. (°C)	Dimensions internal H x W x D (mm)	Dimensions external (Door closed) H x W x D (mm)	Dimensions external (Door open) H x W x D (mm)	Shelf loading (kg)	Volume (litres)	Max power (W)
715841	750	600 × 600 × 900	2240 × 1555× 1715	2750 × 1555 × 1632	50	324	24000

High performance oven with rotating shaft

The high performance oven is fitted with two rotating shafts carrying four support assembly brackets for 8 specialist test tube like metal retorts. These are arranged in two pairs set at 90 degrees to one another astride each shaft.

A digital controller sets and displays the rotation speed from 0 to 20 rpm. The drive allows the shaft rotation speed to be adjusted between 0 and 20 rpm with an audible alarm should the shaft speed drop below a pre-determined value.

- Door interlock to prevent shafts rotating under power with door open
- "Inch" buttons to move shafts slowly when door open
- Eurotherm 3216P1 digital controller also sets rotation speed

Technical data

Ref No.	Max temp. (°C)	Temp. uniformity (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Max power (W)
737388	300	±5°C at 170°C	770 x 470 x 496	1274 x 868 x 820	3000

Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

Custom built GP 2/900 chamber oven

The oven is used to maintain the required temperature of a test rig which includes storage vessels that contain highly flammable gasses. The customer requirements for this oven include a comprehensive safety system. A comprehensive alarm system with speech and SMS text messaging of alarms is included which given indication of: over and under temperature; power failure; gas detection; and element surface temperature limit. The oven has

45 access ports though the back wall and 300 x 300 mm viewing windows with external illumination though the front and back.

- Fan speed control
- Reinforced base to carry loads up to 150 kg
- Heating elements and circulation fans located at each side of the chamber
- 150 mm exhaust damper is located centrally on top of the oven with
 150 mm inlet located at the base of the left hand side

Technical data

Ref No.	Max temp. (°C)	Temp. stability (°C)	Temp. uniformity (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Volume (litres)	Max power (W)
720985	150	±1	±2	1350 x 1350 x 610 Uniform volume 1050 x 1050 x 300	1890 x 2550 x 890	900	7.5

Triple oven system

AMS 2750 E An integrated 3 oven system designed for heat treatment to AMS2750E Class 2 (\pm 5°C) instrumentation Type D. The system was made for a manufacturer of electronic engine and fuel system controls for aircraft engines. They wished to save space hence the 3 ovens are housed within a single frame. The chambers have independent temperature control and share a six channel digital chart recorder equipped with Ethernet communications.

- Ovens used for drying components used in the aerospace industry
- System accuracy test (SAT) port through the side
- Thermocouple connections with plug and socket arrangement accessible on the control panel for ease of re-calibration
- Each oven is fitted with air inlet and adjustable exhaust ports

Technical data

Ref No.	Max temp. (°C)	Temp. uniformity (°C)	Instru- mentation type	External dimensions (whole system) H x W x D (mm)	Uniform dimensions (2 x Smaller chamber) H x W x D (mm)	Internal dimensions (2 x Smaller chamber) H x W x D (mm)	Uniform dimensions (Taller chamber) H x W x D (mm)	Dimensions internal (Taller chamber) H x W x D (mm)	Volume (litres)	Max power (W)
720581	300	Class 2 (±5°C)	D	1800 x 1600 x 1460	450 x 350 x 450	550 x 450 x 550	950 x 350 x 450	1200 x 450 x 550	2 x smaller ovens: 136 each Taller oven: 297	8.5

Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

Fan oven with 6 letterbox doors

This customised oven designed for an automated system has six inward opening letterbox doors set in the main front door which itself can be opened for chamber cleaning. Oven controls are located below the main door and an RS232 connection has been provided.

Samples are robotically loaded and unloaded on sample trays into the chamber and placed on stainless steel shelves which incorporate rectangular cut-outs and positioning lugs. Each internal shelf has a drip tray to catch any sample overspill.

- Eurotherm 3216CC Temperature Controller
- Eurotherm 2132 over-temperature protection
- · Robot loading / unloading of sample trays

Technical data

Ref No.	Max temp. (°C)	Normal operating temp. (°C)	Dimensions internal H x W x D (mm)	Approx. Capacity (litres)	Weight (kg)
744484	150	70 - 100	500 x 490 x 520	127	65

Short form dewar flask oven

This bespoke laboratory forced air circulation oven heats vacuum / Dewar flasks used by analytical microbiologists. With a single hinged front door and magnetic door catch, the single zone chamber heated

with a metal sheathed mineral insulation rod element has seven access ports (one on top and three on each side) and employs "K" type thermocouples.

Supplied with a removable stainless steel tray for the chamber base and a stainless steel bar to act as an inner retort stand 65 mm from each wall.

- 7 Access ports
- Type "K" thermocouples
- Liner made of dull polished 430 grade stainless steel sheet

Technical data

Ref No.	Max temp. (°C)	Temperature uniformity (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Weight (kg)
737621	300	±5	510 x 305 x 305	685 x 455 x 776	50

Please note: Uniformity - empty chamber in steady state conditions after a stabilisation period

HPLC column oven with 6 access ports

This High Performance Liquid Chromatography vertical column oven is seam welded for liquid tightness and cross-folded with a central drain with a silicone pipe positioned 500 mm from the base on the rear panel.

The oven has a single hinged door with controls mounted above. The internal chamber is manufactured with brushed stainless steel and is well insulated with fibre insulation. It has 3 access ports on each side and a roof mounted circulation fan providing forced convection.

- Type "K" Thermocouples
- Eurotherm 2132 temperature controller
- 2132 digital over-temperature controller

nocouple

Technical data

Ref No.	Max temp. (°C)	Access Ports	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Thermocouple	
729734	200	6	500 x130 x 130	750 x 255 x 375	Type "K"	

Top & front loading oven

This custom built top and front loading fan convection oven is one of several that have been manufactured for a number of different applications. These include the thermal testing of borehole test probes for the petrochemicals industry and heat treatment of medical components.

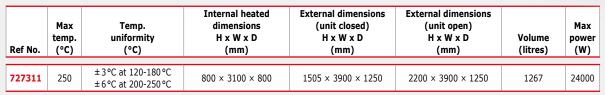
- Single, hinged, counterbalanced lid that opens to expose the top and front of the oven chamber.
- Multiple ovens can be joined at the ends to create a longer oven
- Forced airflow via rear mounted internal circulation fans
- · Interlock to prevent heating without the fans running
- · Adjustable Ø 63mm air vent
- Plugged end slots to allow cable entry into the chamber
- Internal base formed into a tray to contain molten grease escaping from equipment placed in the oven
- · Oven mounted on stand with castors

Technical data

emp. uniformity °C) (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Doors	Volume (litres)	Max power (W)
200 Pottor than ± E0C	20E v 22E0 v 200	1100 v 2500 v 025	Ton and front opening access	200	12000
	c) (°C)	c) (°C) (mm)	(°C) (mm) (mm)	(°C) (mm) (mm) Doors	C) (°C) (mm) (mm) Doors (litres)

Please note: Uniformity - empty chamber in steady state conditions after a stabilisation period

Top loading oven with rotating headstocks



This top loading air circulation oven has been custom built to cure composite components whilst continuously rotating them. In the oven chamber are three electrically driven head-stocks and three tail-stocks which are adjustable so variable lengths of component can be mounted. An adjustable drip tray system collects any residue falling from the components.

- 80 mm 3-jaw chucks with matching adjustable tailstocks
- The tailstocks adjustable for work pieces from 200 mm up to 2500 mm in length
- Head stocks rotate at a fixed speed between 10 & 20 rpm
- The oven can hold one work piece of up to \emptyset 500 mm and up to 2500 mm long, or three pieces of a smaller diameter
- 3 zone control
- Large opening lid with 300 mm × 300 mm viewing window for checking work piece rotation

Technical data

Mesh belt oven

This is an example of a lower temperature mesh belt working in air. It is used for the heat treatment of steel piston rings and can process up to 101 kg per hour. Mesh belt ovens are used to provide a continuous process line that can combine different temperature heating and cooling sections. In this way the material passing through is subject to a heating and cooling profile

without having to wait for the oven itself to heat and cool. Atmosphere control is also possible by passing the mesh belt through a retort that has gas curtains at each end to ensure the correct atmosphere is maintained within the retort.

380 mm wide mesh belt

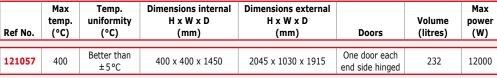
- Variable speed drive with up to 80 mm per minute
- Nominal belt speed of 34 mm per minute
- 2 x 2000 mm long heated zones
- · 1000 mm long air cooled zone

Technical data

Ref No.	Max temp. (°C)	Mesh belt width (mm)	Heated length (mm)	Dimensions: External H x W x D (mm)	Max power (W)
66067	640	380	4000	1700 x 7960 x 1450	36000

Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

HTCR 4/232 high temperature clean room with front and back entry



A custom built pass-through oven that fits through the wall of a clean room operated by a medical device manufacturer. Able to heat to 400 $^{\circ}$ C with a stability of better than $\pm\,1\,^{\circ}$ C under steady state conditions and with a uniformity of better than ± 5 °C inside the chamber. This is achieved by using a three zone control system. The oven is used to heat treat vascular stents that are carried on mandrels that are held in a specially designed loading system.

- · Used in a clean room for heat curing of stents which are placed inside arteries
- · Side hinged doors at each end
- · Forced airflow via top mounted internal circulation fans
- Front and back zones each have one fan, but the centre zone has two fans
- 304 stainless steel chamber with externally welded seams.
- Chamber loading frame with rollers to suit customer's application
- · Loading frame trolley use when removing the frame from the chamber
- Oven support frame

Technical data

3 AMS 2750E vertical high temperature ovens with cabinet

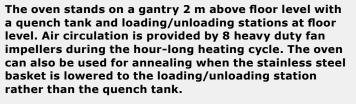
The three front loading high temperature ovens meet AMS 2750E Class 2 compliance with Type B instrumentation for Nadcap certification. Each oven is reinforced for a 500 kg load and has 4 rear mounted stainless steel fans to create horizontal airflow from the front to back of each chamber. There are 12 thermocouple access ports on the side of each chamber which is split in to three zones (top, centre & bottom).

The solution has a separate single external control cabinet.

- Centre Zones: Eurotherm 3508P25 digital time/temperature programmer
- Top & Bottom Zones: Eurotherm 3216 controllers digitally linked to Centre Zones
- Eurotherm 3216CC overtemperature alarm controllers
- Eurotherm 6180A 36 channel AeroDAQ data logger

Technical data

Re	f No.	Max temp. (°C)	Temp. uniformity (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Power rating (W)
72	7963	600	±5°C at 482°C	3000 x 675 x 675	3400 x 1200 x 1375	3 x 33


Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

Drop bottom quench oven

This massive oven is used for 500 °C heat treat and subsequent rapid quench of aluminium. The quenching of material panels of up to 1.6 mm must occur within 5 seconds of leaving the oven to ensure the metallurgical integrity of a typical 80 kg charge.

- Honeywell VPR100 temperature controller
- Eurotherm 2216 Over Temperature
- Type "K" Thermocouple

Technical data

Ref No.	Max temp. (°C)	Temp. uniformity (°C)	Dimensions internal H x W x D (mm)	Power Supply
76052	600	±3	2 x 3 x 1.5	415/240 V 3 Phase

Examples of custom designed chamber furnace solutions

	Page		Page
Chamber Furnaces – Modification Examples		Twin bogie elevator hearth furnace	38
LCF 12/540 large chamber furnace with roller hearth & 3 zone control	31	1800°C elevator hearth furnace	39
LCF 12/560 large chamber furnace for Nadcap compliance	31	Thermal cycling calibration furnace	39
Floor mounted 13/131 general chamber furnace	32	Top hat furnace system with twin retorts	40
RHF 14/35 rapid heating chamber furnace with element protection and electric door actuation	32	3 zone top hat furnace [AMS2750E class 4, type B]	41
16/3 bottom loading cycling furnace	33	Retort carbonisation furnace with atmosphere gas controls	41
BLF 17/3 bottom loading furnace with horizontal movement hearth	33	Four lane strand furnaces for hardening and tempering	42
BLF 17/3 bottom loading furnace with rotary hearth	34	Eight lane strand furnace	43
Chamber Furnaces – Custom Built Examples		AMS2750E mesh belt conveyor furnace	43
GPC general purpose chamber furnace to fit into a clean room wall	34		
Large chamber furnace with circulation fan and loading system	35		
Debinding furnace with retort & forced cooling	35		
Graphite thermal oxidation test furnace	36		
Chamber furnace with retort to fit in a glovebox	36		
3 zone top loading furnace with retort [AMS2750E class 4, type B]	37		
Debinding & sintering furnace with retort & press	37		

Chamber Furnaces up to 1800 °C

Carbolite Gero defines a chamber furnace as a chamber with a ceramic lining operating up to 1800 °C, where heat transfer is predominantly by radiation. For temperatures in the range 1800 °C to 3000 °C please refer to the our catalogue 'Vacuum, Inert and Reactive Gas Furnaces up to 3000 °C'. Carbolite Gero's extensive range of chamber furnaces has chamber volumes ranging from 3 to 725 litres. The following temperature ranges of chamber furnaces are available: 1000 °C; 1100 °C; 1200 °C; 1300 °C; 1400 °C; 1500 °C;

To ensure operator safety, the majority of Carbolite Gero chamber furnaces have up and away doors which keep the hot surface of the door insulation away from the operator. A chimney is provided to assist with removal of fumes. All chamber furnaces have excellent temperature control provided by a range of sophisticated digital controllers. Comprehensive data logging and connection to computers and networks is available along with remote webpage access.

1600°C; 1700°C; 1800°C.

Carbolite Gero has a comprehensive range of standard chamber

furnaces which are detailed in the catalogue 'Laboratory & Industrial Ovens & Furnaces' and are available with a number of standard options including: gas inlets, over-temperature protection, hearth protection tiles and loading trays.

All Carbolite Gero products can be modified to use non-REACH classified thermal insulation materials if required.

Common chamber furnace features

- Highly efficient thermal insulation using a combination of ceramic fibre & refractory brick
- Heating elements made from resistance wire, silicon carbide or molybdenum disilicide depending on the power and maximum temperature required
- Up and away door keeps heated surface away from user
- Hard wearing refectory hearth plate resists damage and supports heavier loads
- A chimney to enable fumes to be removed from the chamber
- Sophisticated digital temperature control
- · Over-temperature protection
- Solid state power control

Common chamber furnace modifications

- Fans: To reduce cooling time and to move ambient air through the hot zone or around the hot zone if an atmosphere is to be maintained
- Mechanical changes: To fit with customers' equipment
- Instrumentation and performance validation for aerospace standard AMS2750E
- Atmosphere control packages which could include: Multiple gas inlets; multiple flow meters with manual flow adjustment; mass flow controller with manual adjustment; mass flow controller with automatic adjustment; pressure sensing of gas or mass flow control to sense gas flow; gas solenoid valves manually or automatically switched; solenoid valves to change rate of flow; gas flow solenoids interlocked to process parameters, e.g. H₂ flow interlocked to minimum temperature
- Gas pre-heating
- Inputs and outputs: To link temperature controllers to customers' automated equipment
- Higher power heating elements: To increase heating rate and to reduce heat up time
- Furnace heating element protection: Silicon carbide protection tiles for chamber furnaces
- Access ports: For thermocouple access; ports to quickly load and unload small parts

- Viewing windows: For higher temperature capability using quartz or sapphire: for viewing and optical temperature measurement. Can be applied to: HTR rotary reactor, chamber furnace doors
- Door interlocks: Automated door locking with the temperature, or with the temperature program
- Chambers extended in one dimension: Can often be a simpler modification than changes to all three dimensions
- Custom dimensions for chambers
- Reinforced chamber hearth
- Loading trays and racks in stainless steel or nickel chromium alloy (Inconel)
- Furnace heating element protection: Silicon carbide protection tiles for chamber furnaces
- Heating elements located under the hearth:
 For improved temperature uniformity
- Multiple temperature zone control
- Programmable vacuum / partial vacuum & extraction
- Loading trolleys
- Flange mounts: For fitting to walls in clean rooms
- Motorised doors

LCF 12/540 large chamber furnace with roller hearth & 3 zone control

This 540 litre chamber furnace is used for batch annealing of bronze bearings used in the aerospace industry and is AMS2750E compliant. It has rollers fitted into the hearth to assist in the loading and unloading of the customer's support trays and baskets. The customer uses a trolley to position their work in front of the the chamber and simply pushes it in.

AMS 2750 E

- Chamber furnace with three zone temperature control
- 3 ZONE
- Silicon carbide hearth fitted with rollers to assist with loading customer's support trays and baskets from a trolley
- Maximum charge weight 150 kg
- Complies with the requirements of AMS2750E to class 4, instrumentation type D
- Pneumatically operated vertically opening door keeps the hot face away from the operator
- · Heavy gauge wire heating elements in the roof and below the hearth

Technical data

Ref No.	Max temp. (°C)	Temp. uniformity (°C)	Chamber dimensions H x W x D (mm)	External dimensions H x W x D (mm)	Volume (furnace) (litres)	Max power (W)
89263	950	±10°C at 900°C	600 × 750 × 1200	Furnace: 2975 × 1310 × 1760 Control cabinet: 1800 × 600 × 600	540	48000

Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

LCF 12/560 large chamber furnace for Nadcap compliance

In this example an LCF chamber furnace has been increased in depth and provided with three zone temperature control. It is compliant with AMS2750E to class 2 and has instrumentation type B (see page 8 for more details). It is used to heat treat fabricated and cast metal parts for the aerospace industry.

- 3 zone cascade control
- 3 ZONE
- Fully calibrated graphic data recorder in control panel
- Hearth made from silicon carbide tiles providing a hard wearing surface
- Kanthal AF heavy gauge wire spiral heating elements located in the roof and protected below the hearth

Technical data

Ref No.	Max temp. (°C)	Temperature stability (under steady state conditions) (°C)	Temperature uniformity (°C)	Uniform volume dimensions H x W x D (mm)	Chamber dimensions H x W x D (mm)	External dimensions H x W x D (mm)	Volume (furnace) (litres)	Max power (W)
715390	1200	±1	±6	350 × 550 × 1200	500 × 750 × 1500	2310 × 1340 × 2050	560	45000

Floor mounted 13/131 general chamber furnace

This floor standing GPC with a hearth height of 1050mm is configured with 7 shelves. Heating zones above, below and in the side walls ensure optimal temperature uniformity and is monitored by thermocouples located at 9 test points within the chamber.

A manually operated vertically opening door ensures user safety and features an air inlet vent to draw in air to the chamber. A short exhaust chimney is fitted on the furnace roof with a damper to remove fumes given off during the burn process.

- Eurotherm 3508 P10 digital time/temperature controller
- RS485 Communication via USB adaptor
- Type "R" thermocouples

Technical data

Ref No.	Max temp. (°C)	Normal operating temp. (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Weight (kg)
737533	1300	700 - 1200	350 x 500 x 750	1652 x 1110 x 1280	400

RHF 14/35 rapid heating chamber furnace with element protection and electric door actuation

An RHF 14/35 was modified using silicon carbide tiles for the roof, walls and hearth. The heating elements are positioned on both sides behind the silicon carbide tiles and so are protected from the load sample. The customer required a reduced oxygen content atmosphere in the chamber and specified a gas inlet for inert gas. One of their applications for the furnace is heating steel 'charpy' samples for heat treatment experiments.

- High purity double spiral silicon carbide elements
- Silicon carbide tiles assist with maintaining a low oxygen atmosphere
- Electrically operated door
- · Emergency stop button fitted due to electrically moving parts
- Over-temperature protection

Technical data

Ref No.	Max temp. (°C)	Continuous operating temperature (°C)	Chamber dimensions H x W x D (mm)	External dimensions H x W x D (mm)	Volume (litres)	Max power (W)
727591	1400	1350	238 × 200 × 465	885 × 780 × 945	22	16000

16/3 bottom loading cycling furnace

This Bottom Loading Cycling Furnace has an electrically operated elevator hearth with safety interlock and a protective cage to protect the user from radiant heat during operation. There are Kanthal 'Crusilite' silicon carbide heating elements on all six walls of the hexagonal chamber to maximise temperature uniformity.

This is an ideal furnace for sintering and the cycling program can be set between 1 & 99 repetitions.

- Eurotherm 3504 Cascade controller
- Eurotherm 2132 over-temperature controller
- Class 1 Type "R" thermocouples

Technical data

Ref No.	Max temp. (°C)	Operating temp. (°C)	Dimensions internal H x Ø (mm)	Dimensions external H x W x D (mm)	Weight (kg)
734217	1600	1500	190 x 150	1025 x 750 x 530	155

BLF 17/3 bottom loading furnace with horizontal movement hearth

This standard furnace was modified to meet the customer's requirements regarding loading and unloading and to protect the heating elements. A crucible used for the glass melting process can be removed by lowering the hearth then moving it horizontally away from the furnace to give maximum access. The heating elements are protected from the glass melting process by the use of a thin walled plasma sprayed alumina tube.

- 600 mm manual horizontal hearth movement in the open position for easy batch charging and removal
- Electrically operated vertical hearth movement into the furnace chamber
- Molybdenum disilicide heating elements positioned around all walls of the chamber
- Excellent temperature uniformity as a result of the hexagonal chamber

Technical data

R	ef No.	Max temp. (°C)	Heat up time (mins)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Temp. uniformity (°C)	Volume (litres)	Max power (W)	Thermocouple
7	01800	1700	80 to 1600°C	190 x 150	1000 x 990 x 755	±2°C vertically on the centreline of the chamber	3	4125	Type B

Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period Max continuous operating temperature is 100 °C below maximum temperature

BLF 17/3 bottom loading furnace with rotary hearth

This bottom loading furnace has been modified to include a rotating hearth. A rotating hearth in this type of furnace is often used for mixing the contents of a crucible placed on the hearth. A ceramic tube is positioned off-centre through the roof of the furnace chamber. It is lowered into the contents of the crucible which causes them to be mixed as the crucible rotates.

- Rotary hearth with speed control of 3 to 50 revolutions per minute
- Alumina element protection tube
- · Inert gas inlet through the hearth
- · Hearth cage
- Excellent temperature uniformity as a result of the hexagonal chamber

Technical data

Ref No.	Max temp. (°C)	Heat up time (mins)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Temp. uniformity (°C)	Volume (litres)	Max power (W)	Thermocouple
124181	1700	80 to 1600°C	190 x 150	1215 x 750 x 580	±2°C vertically on the centreline of the chamber	3	5000	Туре В

Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period
Max continuous operating temperature is 100 °C below maximum temperature

CHAMBER FURNACES - CUSTOM BUILT EXAMPLES | CHAMBER FURNACES UP TO 1800°C

GPC general purpose chamber furnace to fit into a clean room wall

An example of a GPC chamber furnace adapted for use in clean room conditions. The furnace is adapted to fit into the wall of the clean room. Over-centre clamps secure the closed door to a steel surround creating both thermal and gas sealing, preventing the pressurised clean room air leaking into the furnace chamber.

- Two zone control
- · Wall mounted
- Furnace chamber accommodates 4 rows of trays; each row comprises 7 trays
- Insulated door opens outwards then sideways via central pivot support, keeping the hot face away from the operator
- A chimney is fitted in the roof of the furnace, complete with auto / manual damper valve

Technical data

Ref No.	Max temp. (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Volume (litres)	Max power (W)
300904	1200	460 × 460 × 1060	1700 × 1110 × 1300	224	16000

Large chamber furnace with circulation fan and loading system

One of an identical pair of air recirculation furnaces supplied for a 'centre of excellence' manufacturing process development site. The units are designed for use in Nadcap AMS2750E heat treatment applications and operate in the range 500 °C to 1000 °C. Each has a pneumatically vertically opening door and load handling accessories. Air recirculation fans provide rapid and uniform heating through the convection phase of the heating cycle.

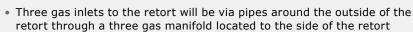
- Age heat treatment of Inconel compressor aero foil blades 1000 off per batch run, blade sets loaded into a rack system
- Customised stacker truck for loading & unloading the furnace chamber ensures the racks are correctly positioned within the chamber
- AMS 2750 E
- Audible and visual alarm, complete with comprehensive status indicator control panel
- Standby key switch, allowing the operator to place the furnace in a standby mode via one single switch
- · Roof mounted internal circulation fan
- Wire coiled heating elements positioned on four sides: side walls, back and door

Technical data

Ref No.	Max temp. (°C)	Temp. uniformity (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Doors	Shelf loading	Volume (litres)	Max power (W)
123829	1000	NADCAP class D 500 - 750 class 2 750 - 1000 class 4	975 x 1330 x 1615 Uniform volume 850 x 850 x 1150	4620 x 2050 x 2750 + separate control cabinet 1800 x 1200 x 600	Vertical lift door	Inconel loading frame	Uniform volume 830	72500

Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

Debinding furnace with retort & forced cooling



This custom built furnace incorporates a metallic retort and is used for sintering ceramic abrasive discs under an inert atmosphere. Other versions of this furnace design have been built to remove binders under controlled atmosphere conditions and have incorporated an exhaust system with an afterburner. The automatically operated roof is opened by variable amounts to achieve controlled cooling rates.

- Atmosphere seal made within the heated zone to avoid condensation
- Roof opening assists with rapid cooling from 800°C to 400°C
- The furnace has three zone control

· Easy access for removal of retort

Technical data

Ref No.	Max	Retort heated zone	External dimensions	External dimensions	Volume	Max
	temp.	dimensions Ø × L	(roof closed) H x W x D	(roof open) H x W x D	(furnace)	power
	(°C)	(mm)	(mm)	(mm)	(litres)	(W)
301224 or 702253	1000	600 × 1500	2206 × 1845 × 2445	3340 × 1875 × 2445	424	40000

Graphite thermal oxidation test furnace

This custom built unit was designed specifically to test graphite control rods used in the nuclear power industry. The customer wanted to carry out accelerated testing of the graphite rods under controlled atmosphere and temperature conditions.

- Retort made from Inconel 601
- Retort door incorporates high temperature silicone seals and water cooled bearing mounts
- · Doors clamped to the retort using eight heavy duty clamps
- Gas system with two different flow paths
- Mixed CO+CO₂ pass through the centre of the product
- Argon gas passes around the outside of the product

Technical data

Ref No.	Max temp. (°C)	Temp. uniformity (°C)	Retort dimensions Ø x H (mm)	Furnace dimensions H x W x D (mm)	Volume (litres)	Max power (W)
719430	1050	±10	600 x 950	1800 x 1200 x 1000	268.6	14800

Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

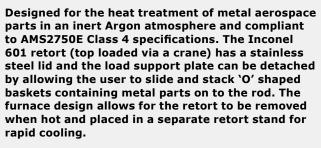
Chamber furnace with retort to fit in a glovebox

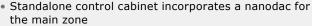
This pair of furnaces are built into a glove box and are used in the nuclear industry as part of the process of containing nuclear waste. The furnaces are designed to meet the rigorous requirements typical in this industry.

- Used for processing materials under an inert atmosphere in a clean room environment
- · Maximum component weight 12 kg
- Removable gas tight air cooled stainless steel access panels for maintenance of elements and thermocouples
- Gas tight 10 mm thick Inconel 601 retort with a flat base
- 304 stainless steel water cooled profiled flange to make a bolt on seal to the glove box outer wall
- 400 mm long removable Inconel radiation plug, complete with handle, fits inside the front of the retort to reduce the temperature of the door

- Manual door opening system with top hinge pivot point
- The furnace external casing and containment panels are cooled by constant flow rated fan
- Three zone cascade temperature control system

Technical data


Ref No.	Max temp. (°C)	Temp. uniformity (°C)	Heat up time (mins)	Uniform dimensions H × W × D (mm)	Furnace dimensions H x W x D (mm)	Max power (W)
721091	1000	± 10 °C at 1000 °C	10°C per min	100 × 300 × 440	1400 × 1460 × 1800	12000



3 zone top loading furnace with retort [AMS2750E class 4, type B]

3 ZONE

- 3508 controllers for top & bottom slave zones
- 3216 over-temperature controllers for all zones

Technical data

Ref No.	Max temp. (°C)	Normal temperature range (°C)	Heating zones	Retort material
738316	1200	700 - 1120	3	Inconel 601

Debinding & sintering furnace with retort & press

This custom built elevator hearth furnace has a retort manufactured from Inconel 601 material and a sophisticated design that incorporates ducts used to introduce laminar airflow plus access at the top for a hydraulically loaded press. The airflow is pre-heated before entering the retort at a rate of two volume changes per minute. The hydraulic press is used to subject materials to pressure whilst they are heated.

- An elevator hearth furnace specially designed for debinding and sintering up to 1100°C
- Bell type retort made from Inconel 601
- Maximum hearth load 100 kg.

- · Hearth forms a gas tight seal with the retort
- Elevator hearth raised and lowered by electro-mechanical drive system with simple push button operation

- Two zone cascade control system with thermocouples located beside the elements and the test samples to accurately control the temperature of the sample
- Cooling fan mounted for cooling operation linked in to the heating or cooling cycle of the furnace

Technical data

Ref No.	Max temp. (°C)	Temp. uniformity (°C)	Retort dimensions Ø × H (mm)	Dimensions external H x W x D (mm)	Volume (litres)	Max power (W)
85054 + 90121	1100	±5°C	475 × 500	5100 × 2120 × 1630	88	44 kW

Twin bogie elevator hearth furnace

This twin bogie elevator hearth furnace is designed for sintering boron nitride SAPI & ESAPI (enhanced small arms protective insert) plates. The twin hearth system allows one bogie hearth to be moved under the furnace and raised for processing whilst a second bogie hearth is unloaded and re-loaded. This results in a faster turn around with consequential overall process time savings.

- Elevator hearth raised and lowered by electro-mechanical drive system, with simple push button operation
- Audible and visual alarm, complete with comprehensive status indicator control panel in a separate control cabinet

- Horizontal movement of hearth by motor and drive pinion system with control system located on the furnace frame for full observation
- Assisted cooling via two roof vents which are automatically operated during cooling below 800°C
- · Molybdenum disilicide heating elements positioned around all four walls of the chamber
- Product monitoring thermocouple positioned in the centre of the hearth

Technical data

Ref No.	Max temp. (°C)	Temp. uniformity (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Doors	Hearth loading (kg)	Volume (litres)	Max power (W)
700659	1700	±7 at 1600°C	1000 x 1000 x 1000	Furnace: 3600 x 2400 x 2400 Control cabinet: 1800 x 2000 x 600	Vertical lift door	900	1000	140000

1800 °C elevator hearth furnace

This design of elevator hearth furnace provides the highest temperature operation possible in air with conventional heating and thermal insulation technology. It can be used for many heating applications required for ceramic research or manufacture.

- Kanthal S 1900 molybdenum disilicide elements suspended vertically from the roof of the chamber
- Elevator hearth raised and lowered by electro-mechanical drive system with simple bush button operation
- Roof insulation and heating elements independently supported by an external metal frame
- The hearth is supported by a robust steel frame incorporating guide wheels for smooth and accurate movement

Technical data

Ref No.	Max temp. (°C)	Internal dimensions H × W × D '(mm)	External furnace dimensions H x W x D (mm)	External control cabinet dimensions H x W x D (mm)	Volume (litres)	Max power (W)
49722	1800	400 × 450 × 600	2000 × 1100 × 1200	1800 × 1200 × 600	108	28

Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

Thermal cycling calibration furnace

This custom built unit is used to calibrate colour change paint used in the aerospace industry. The coated material samples are automatically placed into the thermal cycling furnace where they are moved into the heated zone for a pre-defined period of time. Once the dwell period is complete the sample is moved to a cooling position and when cool is returned to its original position. This cycle repeats for all the samples loaded into the system.

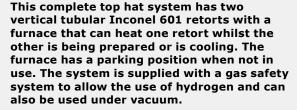
- Eycon 20 control system for visualisation, temperature control and data recording, with colour touch screen
- Liner drive pick and place 600 mm x axis, 500 mm y axis and 100 mm z axis movement
- Sample probe thermocouple incorporated in the furnace lift actuator
- Cascade temperature control system controls the temperature of the sample
- Two over-temperature protection systems in heating element and sample locations

Technical data

Ref No.	Max temp. (°C)	Work tube inner Ø (mm)	Heated length (mm)	Dimensions external H x W x D (mm)	Temp. uniformity (°C)	Max power (W)	Thermocouple
120737	Maximum 1600 Operating temperature range 150 to 1500	60	250	2410 x 1800 x 1190	±4 over central 50 mm	3500	Type R

Top hat furnaces

The principle of a top hat furnace is a fixed hearth and a movable heating chamber. The furnace chamber, which has heating elements on all sides, is raised to expose the hearth and make the working volume of the furnace accessible. Product can be loaded onto the hearth manually or by charging machine; the chamber is then lowered to form a thermal insulation seal with the refractory hearth. Benefits of this design include: excellent temperature uniformity with four sided


heating; additional hearths can be used to reduce overall processing time; incorporation of 'bell' style metallic retorts to work with atmosphere gases; can be zoned vertically to improve temperature uniformity.

Applications for top hat furnaces include: annealing; tempering; stress relieving; specialised component coating; brazing; metal power sintering; firing of ceramics; lost wax process.

Top hat furnace system with twin retorts

Heating interlocked with both a pressure check

- between the seals and cooling water flow
 Gas inlets for gas purge through the retort
- hearths

 Hydrogen flow interlocked to gas safety system
- Hydrogen flow interlocked to gas safety system requirements: furnace temperature; minimum flow rates; gas supply pressures; and pre-timed nitrogen purge; gas burn off with flame failure system
- Three heated zones of 200 mm with 25 mm thick insulated zone barriers
- Audible and visual alarm, complete with comprehensive status indicator control panel in an integrated control cabinet

Technical data

Ref No.	Max temp. (°C)	Temp. uniformity (°C)	Retort dimensions Ø x H (mm)	Heated length (mm)	Dimensions external H x W x D (mm)	Thermocouple	Volume (litres)
721148	1100 Maximum process temperature 1050	±10°C between 800 and 1050°C	190 x 765	600	Overall: 3920 x 3000 x 1200 Furnace: 1090 x 780 x 780	Type N	21

3 zone top hat furnace [AMS2750E class 4, type B]

This 3 Zone Top Loading Furnace for an aerospace manufacturer has a single Haynes 120 retort bell, one working hearth, one parking hearth and a furnace body. With an inert gas system (Argon & Hydrogen) and water cooling of the retort base this complex unit has a plethora of safety features / systems.

The furnace and the retort are lifted independently with the furnace body being lifted to the parking hearth before the retort bell is raised.

- Eurotherm 2704 3-Zone controller with cascade control on center zone
- 2 Eurotherm 2408 instruments for upper & lower slave zones
- 3 Eurotherm 3216 overtemperature protection instruments

Technical data

Ref No.	Max temp. (°C)	Temperature uniformity (°C)	Retort dimensions H x D (mm)	Thermocouples	Max power (kW)
740837	1200	±10°C @ 1080°C	1950 x 1016	Type R (Chamber) Type N (Retort)	132

Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

Retort carbonisation furnace with atmosphere gas controls

This single zone furnace with Kanthal spiral elements contains an Inconel 601 retort with a water cooled stainless steel flange. The retort is equipped with four graphite mandrels on a machined graphite pallet that hold a 38 kg charge which is subjected to extreme pyrolysis for carbonisation.

A roof mounted cooling system and exhaust fan are speed controlled and the outlet damper is only opened during cool down. Open air inlet holes in the hearth allow cooling air to be pulled through when the exhaust is operational.

- Thermocouples: Furnace 2 x Type "R",
 Retort 2 x Type N"
- Eurotherm 6180XI0 paperless VGA touch screen data recorder
- Gas control system has an Argon mass flow controller

Ref No.	Max temp. (°C)	Retort dimensions H x W x D (mm)	Dimensions external H x W x D (mm)	Retort Material	Max Power (W)	Holding Power (W)
729617	1100	1120 x1160 x 1800	5500 x 3500 x 6000	Inconel 601	110000	45000

Wire & strip heat treatment furnaces

Carbolite Gero manufactures a range of products for the wire and strip industry. These include: furnaces for hardening and tempering of blade strip; continuous annealing of stainless steel wire; hardening and tempering of carbon steel wire with in-line quenching; the continuous bright annealing of stainless steel tubes.

Continuous furnaces for the heat treatment of wire and strip can be supplied from a single lane up to 22 lanes, with temperatures ranging from 200 °C to 1200 °C depending on the customers' requirements. Furnace length is determined

by the diameter of the wire, or thickness of strip and the throughput requirements. The wire or strip pass through metallic or ceramic tubes and, where required, through the appropriate atmosphere and water cooling. In this catalogue we show some examples of custom solutions for wire and strip continuous heat treatment. The scope of Carbolite Gero supply is the furnace for heat treatment, the lane tubes and atmosphere control

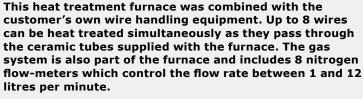
equipment. Carbolite Gero does not supply the wire or strip

feed equipment.

Four lane strand furnaces for hardening and tempering

In this example two furnaces work together to provide both hardening and tempering of stainless steel razor-blade strip, which passes though both furnaces on the same production line.

- 4 × oval cross section work tubes
- Cracked ammonia atmosphere used in the hardening furnace
- Fine control valves allowing flows of 2 22 litres per minute
- 8 equal zones and multiple over-temperature protection
- Wire spiral elements cemented onto ceramic support tubes and mounted horizontally above and below the work tubes


- The furnace is split horizontally at the work tube height allowing the furnace lid section to be lifted easily on its hinged structure
- · A limit switch ensures that the furnace power is disconnected when the lid is lifted
- 16 off type R thermocouples for control and independent over-temperature protection
- Each instrument is fitted with a deviation band alarm giving an audible and visual alarm in the event of furnace over or under temperature

Ref No.	Max temp. (°C)	Heated dimensions of inner work tube (oval tube) H × W x L (mm)	Furnace dimensions H x W x D (mm)	Furnace dimensions (open) H x W x D (mm)	Features	Max power (W)
101680-01	1200	50 x 30 × 5800	1350 x 6450 x 1650	1850 x 6450 × 2150	8 equal zones on each of the 4 lines	68000
101680-02	550	50 x 38 × 1416	1350 x 1856 x 1650	1850 x 1856 x 2150	1 separately controlled zone on each of the 4 lines	18000

Eight lane strand furnace

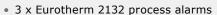
- Gas flow isolation by electrically actuated solenoid valve
- Normal operating temperature range 500 to 1250°C
- Three zone temperature control
- Audible and visual alarm, complete with comprehensive status indicator control panel
- Holding power 11000 W at 1300°C
- · APM wire heating elements wound onto ceramic tubes, supported above the eight lane work tubes
- Split construction for maintenance access to work tubes and heating elements
- Interlocks prevent heating if the lid is open

Technical data

Ref No.	Max temp. (°C)	Temp. uniformity (°C)	Lane tubes inside Ø x length (mm)	Heated length (mm)	Dimensions external H x W x D (mm)	Thermocouples	Max power (W)
704944	1300	±10 over 600 mm at 1200°C	8 tubes Ø 21 x 1286	600	1830 x 1670 x 1360	Type R	18000

Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

AMS2750E mesh belt conveyor furnace


This mesh belt conveyor furnace is used for annealing an Inconel product in an 'inert' nitrogen atmosphere that complies with AMS2750E Class 4 Type D instrumentation standards.

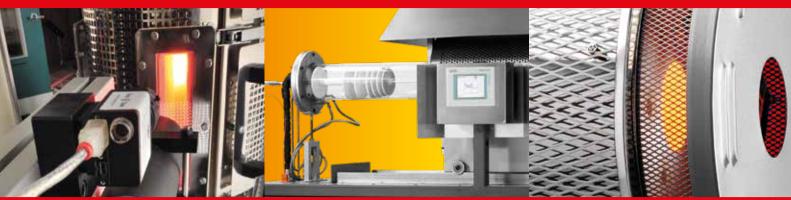
As much as 25 kg of the product passes through the three heated zones of the inert gas retort on a stainless steel mesh belt at a speed between 70 mm to 280 mm per minute. It is subjected to heating and cooling.

- Three heating zones between 980 °C and 1120 °C
- Eurotherm 3504P10 master controller
- 2 x Eurotherm 3216CC slaves

6 x Type "N" Thermocouples

Technical data

Ref No.	Max temp. (°C)	Temp. uniformity (°C)	Furnace zones	Heated length (mm)
727262	1120	±10	3	2000



Examples of custom designed tube furnace solutions

Page	Page	Page
Tube Furnaces – Modification Examples	Standard HTRH 16/100/600 tube furnace up to 1600°C, attached to an inert gas glove box for	Split Tube Furnaces – Custom Built Examples
AZ – eight-zone tube furnace up to 1300°C 47	Custom made HTRV 16/100/4000 tube furnace up to 1600 °C, attached to an inert gas glove	Split chamber furnace with viewing windows 59
4 x GHA 12/450 modular horizontal tube furnaces in a rack 47 system	Custom designed graphite tube furnace 3 heating zones and inert 54 gas counter flow flanges for	Split chamber furnace to fit into a hydraulic press
GVA 12/125/150 modular vertical chamber furnace 48	Split Tube Furnaces – Modification Examples	M-Range vertical split tube furnaces 60
Standard tube furnace HTRH-3 18/100/600 on custom stand with castors 48	VST 12/50/150 vertical split tube furnace with element protection 55	High temperature split 3-zone tube furnaces 61
Tube Furnaces – Custom Built Examples	2 x TVS 12/90/900 vertical split 3-zone tube furnaces in tandem on a mounting frame 55	Rotating Tube Furnaces – Modification Examples
Bespoke assembly of 6 vertical MTF 9/25/250 tube furnaces 49	EST 12/38/150 split tube furnace with L stand 56	HTR 6/100/350 rotary reactor tube furnace with stainless steel 62 reaction vessel
Twin 2 x MHC 12/230/450 modular horizontal tube furnaces 49 in a rack with gas system	Compact split tube furnace for wire drawing 56	STF 16/610 hign temperature single zone tube furnace with rotating and tilting mechanism
MTF 15/5/100 mini tube furnace with platinum alloy heating 50 element	Horizontal split tube furnace FZS 13/100/4500 for heat treatment 57 of long metal parts	HZS 12/75/900 with rotating and tilting mechanism 63
TZF 12/38/400 3-zone calibration tube furnace with automated loading 50	Split tube furnace FST 9/150/750 with special end insulation 57	Rotating Tube Furnaces – Custom Built Examples
Vertical FHA 13/50/200 with water tank for sample quenching 51	Split tensile test furnace with extensometer access 58	2 x twin HTR 11/75 rotary reactor tube furnace – total of 4 64 vessels
Vertical FHA 13/80/500 with manual sample movement under controlled atmosphere	Split tensile test furnace with viewing windows 59	HZS 12/75/900 horizontal split 3-zone tube furnace with rotating 65 and tilting mechanism
3 x FHA 13/80/500 tube furnaces in safety cabinet 52		HZS 12/120/1200 horizontal split 5-zone tube furnace with rotating 66 and tilting mechanism
ACT 13/360 air cooled calibration tube furnace 52		3-zone split 13/120/1400 with rotating and tilting mechanism 67
Cycling corrosion test furnace with gas system 53		3-zone split 8/300/1500 with rotating and tilting mechanism 67

Tube Furnaces up to 1800 °C

Carbolite Gero defines a tube furnace as a furnace that uses a work tube to contain the sample being heated. They are typically constructed using ceramic linings and operating up to 1800 °C, where the heat transfer is predominantly by radiation. For temperatures in the range 1800 °C to 3000 °C please refer to the our catalogue 'Vacuum, Inert and Reactive Gas Furnaces up to 3000 °C'. Carbolite Gero's extensive range of tube furnaces has tube diameters ranging from 15 mm to 150 mm.

The following temperature ranges of tube furnaces are available: 900°C; 1000°C; 1100°C; 1200°C; 1400°C; 1500°C; 1600°C; 1700°C; 1800°C.

Carbolite Gero tube furnaces are available with single zone temperature control. Many are also available with three zone control, used to increase the temperature uniformity along the work tube. Split tube furnaces are also available where the body of the furnace opens along its length allowing the furnace to be closed around a work tube or work piece.

All tube furnaces have excellent temperature control provided by a range of sophisticated digital controllers. Comprehensive data logging and connection to computers and networks is available along with remote webpage access.

Carbolite Gero has a comprehensive range of standard tube furnaces which are detailed in the catalogue 'Laboratory & Industrial Ovens & Furnaces' and are available with a number of standard options including: a range of metallic and ceramic work tubes; work tube end seals incorporating gas inlets, thermocouple glands and vacuum flange connections vertical stands; thermal insulation plugs and radiation shields to reduce thermal losses from the ends of work tubes; wall mounting bracket; separate control cabinet; over-temperature protection;.

All Carbolite Gero products can be modified to use non-REACH classified thermal insulation materials if required.

Common tube furnace features

- Highly efficient thermal insulation using a combination of ceramic fibre & refractory brick
- Heating elements made from resistance wire, silicon carbide or molybdenum disilicide depending on the power and maximum temperature required
- Sophisticated digital temperature control including multizone temperature control
- Over-temperature protection including over-temperature per zone for multi-zone control
- Solid state power control

Common tube furnace modifications

- Fans: To reduce cooling time and to move ambient air through the hot zone or around the hot zone if an atmosphere is to be maintained
- Mechanical changes: To fit with customers' equipment
- Instrumentation and performance validation for aerospace standard AMS2750E
- Atmosphere control packages which could include: Multiple gas inlets; multiple flow meters with manual flow adjustment; mass flow controller with manual adjustment; mass flow controller with automatic adjustment; pressure sensing of gas or mass flow control to sense gas flow; gas solenoid valves manually or automatically switched; solenoid valves to change rate of flow; gas flow solenoids interlocked to process parameters, e.g. H₂ flow interlocked to minimum temperature
- Gas pre-heating
- Inputs and outputs: To link temperature controllers to customers' automated equipment
- **Higher power heating elements:** To increase heating rate and to reduce heat up time

- Furnace heating element protection: Silicon carbide protection tiles for chamber furnaces
- Access ports: Small diameter tube perpendicular to work tube
- Viewing windows: For higher temperature capability using quartz or sapphire: for viewing and optical temperature measurement. Can be applied to: tube furnace end seals, tube furnaces perpendicular to a quartz work tube, exit end of rotating tube furnaces
- Tube furnace custom heated lengths and diameters longer heated lengths; shorter heated lengths; larger diameter versions > 200 mm
- Multiple temperature zone control: Zone barriers in tube furnaces with modular vacuum formed elements including non-split tube furnaces EHC, EVC, GHC, GVC & split tube furnace EZS, EVZ, HZS, TVS
- Tube furnace equalisation block to improve temperature stability and uniformity

AZ - eight-zone tube furnace up to 1300 °C

The AZ is a tube furnace consisting of eight independent heating zones. These zones can be used to generate temperature profiles along the heated length of the furnace.

- Eight-zone control for variable heating profiles
- Gradients, linear increase/decrease etc. of temperature along the heated length
- Extended uniform temperature distribution
- 8 ZONE
- Short heating and cooling rates
- · Automatic operation
- Data recording for quality management

Three typical possible temperature profiles inside the furnace. The eight zones give a maximum of flexibility.

CARBOLITE

VAC

Technical data

Ref No.	Model	Max temp. (°C)	Dimensions: external H x W x D (mm)	Dimensions: maximum outer Ø accessory tube (mm)	Dimensions: heated length (mm)	Max. power (W)	Voltage (V)	Current (A)
30031	AZ 13/32/360	1350	990 x 1800 x 500	32	360	1500	400 (3P)	3 x 4
18426	AZ 13/50/430	1350	990 x 1800 x 500	50	430	2900	400 (3P)	3 x 9
34133	AZ 13/80/810	1350	990 x 1800 x 500	80	810	7300	400 (3P)	3 x 12
28822	AZ 13/110/1000	1350	1200 x 1800 x 520	110	1000	11300	400 (3P)	3 x 19

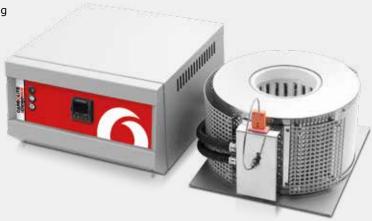
4 x GHA 12/450 modular horizontal tube furnaces in a rack system

Four standard tube furnaces have been mounted into a support frame with the control equipment positioned in an integrated control panel. Each furnace can be used independently and is used for long term oxidization of material in atmospheres for periods of up to 6 months.

- Designed to save space and be used within a work cell
- To suit work tubes inner Ø 150 mm x 750 mm long
- Each furnace has independent 3216P1 digital temperature control with RS232 communications

Technical data

Ref No.	Max temp. (°C)	Max continuous operating temperature (°C)	Dimensions: heated length (mm)	Dimensions: maximum outer Ø accessory tube (mm)		Thermocouple	Max power (W)
707008	1200	1100	450 each	170	1525 x 1850 x 900	Type R	12880



GVA 12/125/150 modular vertical chamber furnace

A simple adaptation of a tube furnace heating element is used to create a small top loading chamber furnace.

- Adaptation of a short heated length large diameter tube furnace to create a top loading chamber
- Vertical single zone tube furnace
- To suit work tubes or work pieces up to outside \emptyset 125 mm

Technical data

Ref No.	Max temp. (°C)	Max continuous operating temperature (°C)	Dimensions: heated length (mm)	Dimensions: maximum outer Ø accessory tube (mm)	Dimensions: external H x W x D (mm)	Thermocouple	Max power (W)
709325	1200	1100	150	125	Furnace:200 x 380 x 320 Control Box:225 x 370 x 380	Type N	3000

Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

Standard tube furnace HTRH-3 18/100/600 on custom stand with castors

A high temperature horizontal tube furnace HTRH-3 18/100/600 on a custom built stand, with integrated controls. All Carbolite Gero tube furnaces can be adjusted to suit customer requirements. Please enquire.

- Custom built stand with castors and integrated controls
- Three heated zones
- Main zone with a 3216P1 controller, and two end zones each with a 3216CC controller
- · Retransmission of setpoint
- · Voltage and current gauges for each zone
- · Over-temperature protection

Ref No.	Max temp. (°C)	Operating temp. (°C)	Heated length (mm)	Tube diameter (mm)	Dimensions external H x W x D (mm)	Thermocouple	Max power (W)
20172224	1800	1700	600	100	1800 x 890 x 520	Type B	10900

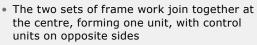
Bespoke assembly of 6 vertical MTF 9/25/250 tube furnaces

Six small tube furnaces are mounted in two rows of three vertically in a bespoke assembly. Each single zone furnace will normally operate between 350 °C and 900 °C.

Kanthal AF resistance wires are coiled around a 25 mm diameter / 250 mm long ceramic tube to form the heating element in each of the six furnaces.

- Eurotherm 3216 P1 digital time/ temperature controller for 8 segments
- Controls housed in a remote cabinet
- Type "N" thermocouple in each of six furnaces

Technical data


Ref No.	Max.	Temp.	Operating	Heated volume	Dimensions external
	temp.	stability	temp.	Ø x length	H x W x D
	(°C)	(°C)	(°C)	(mm)	(mm)
734815	1000	±1.0	900	25 x 250	850 x 755 x 500

Twin 2 x MHC 12/230/450 modular horizontal tube furnaces in a rack with gas system

In this case four custom built tube furnaces have been mounted into support frames. Each pair of furnaces has an integrated control panel with both 3 zone temperature and mass view gas control. The customer's quartz vessels fit into the furnaces and connect to the gas system. They are used for a diffusion process.

- Each furnace has water cooled outer case
- \bullet Two mass flow control units for ${\rm N_2}~\&~{\rm O_2}$ per furnace

Technical data

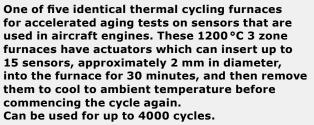
Ref No.	Max temp. (°C)	Max continuous operating temperature (°C)		Dimensions: maximum outer Ø accessory tube (mm)		Thermocouple	Max power (W)
726887	1200	1100	450 each	230	1635 x 1000 x 1025 each	Type N	20000

MTF 15/5/100 mini tube furnace with platinum alloy heating element

An example of a very small, 5 mm diameter, tube furnace used in conjunction with equipment for elemental analysis. Pyrolysis of a sample takes place inside a very small diameter tube that passes through the furnace.

- Heats to 1500 °C in 7 minutes
- \bullet The gases flow along a Ø 1 mm tube which runs through the furnace
- · Single zone tube furnace
- · Platinum alloy heating element
- Supplied with a mounting bracket that fixes within the customer's equipment

Technical data


Ref No.	Max temp. (°C)	Max continuous operating temperature (°C)	Dimensions: fixed tube inner Ø (mm)	Dimensions: heated length (mm)	Dimensions: external H x W x D (mm)	Thermocouple	Max power (W)
703625	1500	1450	5	100	Furnace: Ø 200 x 260 long Control Cabinet: 430 x 400 x 400	Type R	300

Please note: Uniformity - empty chamber in steady state conditions after a stabilisation period

TZF 12/38/400 3-zone calibration tube furnace with automated loading

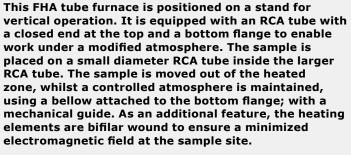
- Linear actuated motion system moves the thermocouples into the heated zone of the furnace
- Two timers are used to control the period of time in the hot zone position and the period of time in the cooling position
- Safety interlocked lid stops the movement of the actuator if opened

Ref No.	Max temp. (°C)	Max continuous operating temperature (°C)	Dimensions: fixed tube inner Ø (mm)	Temperature uniformity (°C)	Dimensions: heated length (mm)	Dimensions: external H x W x D (mm)	Thermocouple	Max power (W)
117899	1200	1100	38	±5°C over 130 mm in the centre	400	550 x 1000 x 410	Type N	1500

Vertical FHA 13/50/200 with water tank for sample quenching

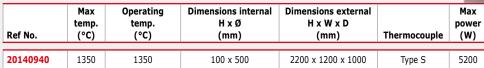
This FHA tube furnace is positioned on a stand for vertical operation. It is equipped with the inert gas package to enable it to work under controlled atmospheres. Attached to the flange is small water tank. After heat treatment, the sample falls down into the tank to be quenched. If a vacuum is to be applied inside the work tube, the water tank can be separated from the work tube by an additional valve.

- FeCrAl heaters and fibre insulation
- · Sample thermocouple
- Eurotherm mini 8 controller with touch panel
- · Gases are controlled by a rotameter
- · Water-cooled door flanges
- Small integrated water tank


Technical data

Ref No.	Max temp. (°C)	Operating temp. (°C)	Dimensions internal H x Ø (mm)	Dimensions external H x W x D (mm)	Thermocouple	Max power (W)
201622	L3 1350	1350	50 x 200	1500 x 1200 x 800	Type S	1500

Vertical FHA 13/80/500 with manual sample movement under controlled atmosphere



- Bifilar wound FeCrAl heaters and fibre insulation
- Sample thermocouple
- Eurotherm mini8 controller with 7.5 inch touch panel

$3 \times FHA 13/80/500$ tube furnaces in safety cabinet

This design features three F-type tube furnaces, mounted in a moveable rack inside a safety cabinet. The cabinet is made of thick stainless steel to withstand potential explosions of toxic or volatile loads. All controls are integrated within a single control console.

- Space-saving design
- Thick stainless steel safety cabinet for increased protection
- Gas tight cable feeds into the cabinet
- · Connection to customer's exhaust system
- Door switch

Technical data

Ref No.	Max temp. (°C)	Heated length (mm)	Tube diameter (mm)	Dimensions external H x W x D (mm)	Door	Thermocouple	Max power (W)
20172222	1350	500	80	2080 x 1550 x 1210	Hinged door with three locks	Type S	16000

ACT 13/360 air cooled calibration tube furnace

This custom built tube furnace is used during the manufacture of thermocouples. It is used for calibration over a wide temperature range and has 'bifilar' elements to minimise induced electro-magnetic effects. This system allows a fast throughput of products due to a quick heat up rate and an accelerated cool down feature.

- Horizontal tube furnace with twin metallic work tubes and air cooling
- Cooling air is introduced between the two work tubes to achieve rapid cooling rates
- Inner Kanthal APM work tube inner Ø 64 mm x 900 mm long
- · Phase angle current limit power controller
- Silicon carbide heating elements positioned parallel to the work tube

Technical data

Ref No.	Max temp. (°C)	Max continuous operating temperature (°C)	Dimensions: heated length (mm)	Dimensions: tube Ø (mm)	Dimensions: external H x W x D (mm)	Thermocouple	Max power (W)
706402	1300	1200	360	Inner tube: Ø 64 mm inside Outer tube: Ø 99 mm inside	Furnace: 730 × 860 x 510 Control cabinet: 620 x 600 x 500	Type R	7000

Cycling corrosion test furnace with gas system

This is an excellent example of a system which combines a tube furnace, gas control equipment and mechanical modifications. The tube furnace and its integral extraction hood are mounted on wheels and can be moved along the quartz work tube. The rails for the wheels are mounted on the support frame. Mass flow controlled gas supplies are fed into the work tube through end seals together with probe thermocouples. It is used for long term corrosion testing of turbine blades.

- Siemens TP 177B HMI colour touch screen control system with temperature display, gas control and alarm display
- Three gas inlets designated for:
 - Mixed gases H₂ CO CO₂ H₂O
 - Sulphur dioxide SO,
 - Nitrogen purge and emergency nitrogen purge
- Gas control through mass flow controllers connected to the Siemens control system with flow range 0 to 10 litres per minute
 Mixed gases pass through a humidifier with a maximum flow rate
 - of 4 litres per minute. Deionised water supply required

 Hydrogen and carbon monoxide flow interlocked to furnace
 - temperatures above 750°C. Override key switch is provided
 - Four gas leak detectors
 - Heavy gauge APM wire heating element cassette suitable for 1300°C operation

Technical data

Ref No.	Max temp. (°C)	Continuous temp. (°C)	Work tube inner Ø (mm)	Heated length (mm)	Dimensions external H x W x D (mm)	Thermocouple	Max power (W)
700368	1300	1200	150	500	1980 x 2200 x 1000	Type R	12600

(i) Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

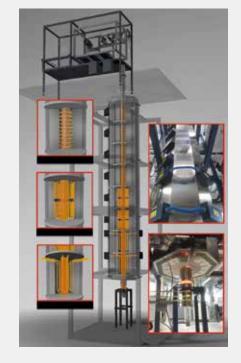
Standard HTRH 16/100/600 tube furnace up to 1600 °C, attached to an inert gas glove box for loading and unloading the furnace under an inert gas atmosphere

A standard HTRH 16/100/600 tube furnace with comprehensive inert gas package, attached to a glove box to allow the loading and unloading of the tube furnace in an inert gas atmosphere. All HTRH, HTRV and F-type tube furnaces can be attached to inert gas glove boxes. Other glove box sizes and types are available; please enquire.

- Heat source outside the glove box for cool glove box atmosphere
- Manual inert gas control of the tube furnace
- Water-cooled flanges to protect the glove box
- Gas tight flange between the furnace and glove box
- Glove box with two gloves and two antechambers

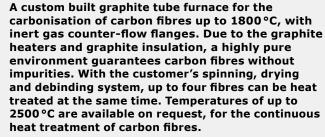
Max

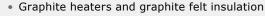
Ref No.	Max temp. (°C)	Heated length (mm)	Tube diameter (mm)	Dimensions external H x W x D (mm)	Glove box Antechambers	Thermocouple	Max power (W)
20172226	1600	600	100	2300 x 4200 x 1250	2	Type B	10900


Custom made HTRV 16/100/4000 tube furnace up to 1600 °C, attached to an inert gas glove box for vertical heat treatment of fibres under an inert gas atmosphere

This custom designed HTRV furnace with comprehensive inert gas package, has been attached to a glove box to allow the heat treatment of fibres under an inert gas atmosphere. The fibre spinning system has been attached by the customer. All HTRH, HTRV and F-type tube furnace can be attached to inert gas glove boxes. Other glove box sizes and types are available; please enquire.

- Heat source outside the glove box for cool glove box atmosphere
- Manual inert gas control of the tube furnace
- · Water-cooled flanges to protect the glove box
- · Gas-tight flange between the furnace and glove box


Technical data


Ref No.		Max temp. (°C)	Heated length (mm)	Tube diameter (mm)	Dimensions external H x W x D (mm)	Thermocouple	Max power (W)
201722	29	1600	4000	100	8000 x 2000 x 2000	Туре В	45000

Custom designed graphite tube furnace 3 heating zones and inert gas counter flow flanges for the heat treatment of carbon fibres up to 1800 °C

- 3 heating zones, each with a pyrometer temperature controller
- Separate control cabinet

Ref No.	Max temp. (°C)	Operating temp. (°C)	Heated length (mm)	Dimensions external H x W x D (mm)	Temperature measurement	Max power (W)
20172238	1800	1800	900	1500 x 3000 x 1000	Pyrometer	53000

VST 12/50/150 vertical split tube furnace with element protection

A standard furnace has been modified to change the hinge arrangement and to provide protection of the heating elements by metallic shields. The furnace is used in a long term materials test rig, with materials being tested for months or years.

- Vertical split tube furnace with single zone temperature control
- Inner Inconel liner shield prevents accidental contact with the heating elements
- Furnace body is hinged and split into two along its length and is held closed with over-centre clamps
- Easy access to reactors or work tubes
- To suit work tubes or work pieces up to outside Ø 50 mm

Technical data

Ref No.	Max temp. (°C)	Max continuous operating temperature (°C)	Dimensions: heated length (mm)	Dimensions: maximum outer Ø accessory tube (mm)	Dimensions: external H x W x D (mm)	Thermocouple	Max power (W)
702380	1000	900	150	50	Furnace: 210 × 250 × 270 Control Box: 225 x 370 x 380 each	Type N	900

Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

 $2 \times TVS$ 12/90/900 vertical split 3-zone tube furnaces in tandem on a mounting frame

Two standard 3-zone vertical split tube furnaces have been joined together to provide an extended heated length. They are used in the processing of ceramic filters. The modifications include the addition of metallic element protection shields and the mounting of the furnaces onto a single frame.

- Six zones of control with a short unheated section
- Inner Inconel liner shield prevents accidental contact with the heating elements
- Furnace body is hinged and split into two along its length and is held closed with over-centre clamps
- To suit work tubes or work pieces up to outside Ø 75 mm

Technical data

Ref No.	Max temp. (°C)	Max continuous operating temperature (°C)	Dimensions: heated length (mm)	Dimensions: maximum outer Ø accessory tube (mm)	Dimensions: external H x W x D (mm)	Thermo- couple	Max power (W)
709972	1000	900	Top zone = 150 Centre zone = 600 Bottom zone = 150 per furnace	90	Furnace: 2080 × 500 × 560 Control Box: 225 x 570 x 380 each	Type N	9000

EST 12/38/150 split tube furnace with L stand

A single horizontal split EST tube furnace is mounted on an L stand to enable vertical or horizontal use. The furnace is hinged to facilitate easy exchange of quartz work

tubes of varying diameters and for any required maintenance.

Free radiating Kanthal AF resistance wire is coiled and formed in to modular heating elements and Type "N" thermocouples are located within the chamber.

- Eurotherm 3216 P1 high precision PID temperature controller with 8 segments
- Controller & power equipment housed in a remote box
- RS232 communication with panel mounted 'D' sockets

Technical data

Ref No.	Max. temp. (°C)	Operating temp. (°C)	Heated length (mm)	Tube diameter (mm)	Heated zones
733793	1200	1100	150	38	1

Compact split tube furnace for wire drawing

This EST 12/300 compact split tube furnace has been modified for a wire drawing application. It has a centre line height of 140 mm and is mounted on a base with integral rails. When pulled forward on these rails the furnace will only open by 10 mm for brief access by the operator.

The furnace has an inert gas feed with a thermocouple probe measuring the temperature inside the tube. Data is fed directly to the clients logging system.

An element protection shield is also fitted to safeguard the furnace in the event of broken wire or contamination from product issues during the wire drawing process.

- Eurotherm 3508 P1 controller
- 1.5 mm Type "N" thermocouples

Ref No.	Max temp. (°C)	Operating temp. (°C)	Heated length (mm)	Dimensions external H x W x D (mm)	Max power (W)
740341	1100	600 - 1000	300	378 x 566 x 610	2520

Horizontal split tube furnace FZS 13/100/4500 for heat treatment of long metal parts

This FZS tube furnace is built with an APM work tube inside, and is split for easier maintenance and changing of the work tube. A small lip on the right eases the loading of the parts that are heat treated. A wide variety of diameters and heated lengths can be designed due to the modular design of the heating elements.

- 5 mm thick FeCrAl heating elements and fibre insulation
- 3-zone temperature controlled furnace
- 3000 mm centre zone and 750 mm end zones
- · Eurotherm 3508 master zone controller
- APM work tube with outside Ø 100 mm, inside Ø 90 mm and a length of 4825 mm

Technical data

Ref No.	Max temp. (°C)	Operating temp. (°C)	Dimensions internal H x Ø (mm)	Dimensions external H x W x D (mm)	Thermocouple	Max power (W)
20153171	1300	1300	100 x 4500	2200 x 800 x 5050	Type S	45000

Split tube furnace FST 9/150/750 with special end insulation

This custom built F-type split tube furnace has been specially built to fit into the customer's machine. All Carbolite Gero tube furnaces can be adjusted to suit customer

requirements, e.g. the heated length and diameter. Please enquire.

- Increased diameter to 150 mm
- Special heated length of 750 mm
- End insulation according customer's specification
- Limited to 900 °C maximum temperature due to small end insulation
- Over-temperature protection

Ref No.	Max temp. (°C)	Operating temp. (°C)	Heated length (mm)	Tube diameter (mm)	Dimensions external H x W x D (mm)	Thermocouple	Max power (W)
20161707	900	900	750	150	590 x 1000 x 520	Type S	10000

Split tube furnaces for materials testing

Material testing often requires the material under test to be held at elevated temperatures. Carbolite Gero has designed and manufactured many furnaces and ovens for these applications.

The furnace or oven body is a split construction allowing the furnace to be clamped around the material under test. The split body may be a hinged construction or the two halves could separate completely either supported on rails or by fixing to a stacker truck. Space constraints often limit the heated length of the furnace leading to the requirements for 3-zone temperature control to achieve the desired temperature uniformity.

For very long term testing the requirements may include the built in redundancy of the control thermocouple, and very conservative rating of heating elements to reduce the risk of failure during the test.

Split tensile test furnace with extensometer access

Split tube furnaces can be readily modified to give extensometer access for material testing. The furnace is clamped around the material under test with the extensometer passing through the cut away slot in the side of the furnace. A bracket is fixed to the cut away area of the furnace for mounting the extensometer.

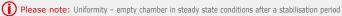
- Vertical split tube furnace with 3-zone temperature control
- Furnace body is split into two along its length and is held closed with overcentre clamps
- Furnace mounted on vertical rods to suit the customer's equipment and give easy access to sample
- ullet Extensometer access slot measuring 120 mm high x 10 mm wide cut-out at the centre of the furnace split line
- To suit work tubes or work pieces up to outside Ø 90 mm

Technical data

Ref No	Max temp. o. (°C)	Max continuous operating temperature (°C)	Dimensions: heated length (mm)	Dimensions: maximum outer Ø of sample (mm)	Dimensions: external H x W x D (mm)	Thermocouple	Max power (W)
30225	3 1200	1100	Top zone = 100 Centre zone = 100 Bottom zone = 100	90 (Chamber inner Ø = 120)	500 x 340 x 340 Control Box:225 x 570 x 380	Type N	2500

Split tensile test furnace with viewing windows

A split tube furnace used for materials testing. In this case quartz viewing windows are fitted in both sides. The windows can be used for viewing by a camera or for optical temperature measurement of the sample.



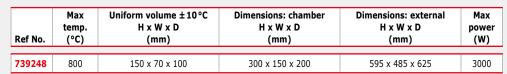
- Vertical split tube furnace with 3-zone temperature control
- Furnace body is split into two along its length and is held closed with over-centre clamps
- Furnace is mounted by M6 threaded holes in the ends of the furnace body
- \bullet Two quartz viewing windows 170 x 40 mm each with two glass panels
- To suit work tubes or work pieces up to outside Ø 90 mm

Technical data

Ref No.	Max temp. (°C)	Max continuous operating temperature (°C)	Dimensions: heated length (mm)	Dimensions: maximum outer Ø of sample (mm)	Dimensions: external H x W x D (mm)	Thermocouple	Max power (W)
720840	1000	1000	Top zone = 100 Centre zone = 100 Bottom zone = 100	90 (Chamber inner Ø = 120)	410 x 300 x 440 Control Box: 225 x 570 x 380	Type N	2500

TUBE FURNACES UP TO 1800 °C | SPLIT TUBE FURNACES - CUSTOM BUILT EXAMPLES

Split chamber furnace with viewing windows


A custom built split chamber furnace with quartz viewing windows. The quartz viewing windows can be used for viewing with a camera, illumination, and for optical measurement of the sample surface temperature. The split design allows the furnace to be clamped around the test piece in a materials test rig.

 Furnace body is split into two along its length and is held closed with over-centre clamps

- Furnace mounted on linear slide bearings on a frame to suit the customer's equipment and give easy access to sample
- Quartz viewing window 125 x 50 mm with 2 glass panels with reflective coating
- \bullet Ø 30 mm sight glass ports used by the customer to illuminate the chamber
- Water cooled jackets for tensile test samples
- Gas flow inlets to allow for a modified atmosphere
- To suit work tubes or work pieces up to outside Ø 60 mm

Water cooling jacket

Split chamber furnace to fit into a hydraulic press

A split chamber furnace designed to fit within the customer's hydraulic press. The customer processes the materials under both pressure and high temperature. Half of the furnace is removed on a stacker truck to give clear access to the material in the press.

- For the manufacture of material used in thermal imaging and detecting equipment
- Furnace body is split into two along its length and is held closed with over-centre clamps
- Furnace body mounting points to fix to customer's equipment
- 3508P1 temperature control with digital input to monitor customer's air pressure and hydraulic valves
- To suit work tubes or work pieces up to outside Ø 150 mm

Technical data

Ref No.	Max temp. (°C)	Max continuous operating temperature (°C)	Dimensions: heated length (mm)	Dimensions: maximum outer Ø of sample (mm)	Dimensions: external H x W x D (mm)	Thermocouple	Max power (W)
711520	1300	1300	160	150	550 x 560 x 560 Control Box: 770 x 600 x 500	Type R	21000

Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

M-Range vertical split tube furnaces

A number of custom built split tube furnace have been designed for use with work tubes or reactor vessels up to 250 mm outer diameter. These products have been given the model designation letter M to create the M-range of split tube furnaces. These furnaces can be used for many applications such as heating reactors in pilot plant or to fit around a hydraulic press.

- Vertical split tube furnaces with single or 3-zone temperature control
- Furnace body is hinged and split into two along its length and is held closed with over-centre clamps
- \bullet To suit work tubes or work pieces up to outside Ø 250 mm

Ref No.	Model	Max temp. (°C)	Max continuous operating temperature (°C)	Dimensions: heated length (mm)	Dimensions: maximum outer Ø accessory tube (mm)	Dimensions: external furnace H x W x D (mm)	Dimensions: control box H x W x D (mm)	Thermo- couple	Max power (W)
122193	MVT 12/250/600	1200	1100	600	250	1210 x 790 x 830	225 x 370 x 380	Type N	6000
711373	MVZ 12/250/1350E	1200	1100	Top zone = 320 Centre zone = 750 Bottom zone = 180	250	1500 x 610 x 640	620 x 600 x 500	Type N	20100

High temperature split 3-zone tube furnaces

These high temperature horizontal split tube furnaces have many applications in material research where easy access to the work tube or reactor is required. Applications include:

- Used for the development of new wafer materials
- Clean-room conditions inside the work tube
- Working with vacuum to 10⁻⁵ mbar
- Working where purified gases are required
- Maximum temperatures of 1300 °C, 1500 °C & 1600 °C
- · Heating elements positioned perpendicular to the chamber to allow multi-zone temperature control
- · Horizontal split tube furnace with three zone temperature control
- Insulation zone barriers between heated zones
- Furnace body is hinged and split into two along its length, and is held closed with over-centre clamps
- Lid opening assisted by gas springs
- To suit work tubes outside diameters in the range 60 mm to 130 mm (see data table for details)
- Can be mounted on an 'L' stand to allow horizontal and vertical use

Ref No. 124296 (HZS 13/110/600) Ref No. 120101 (HZS 16/110/900)

Ref No.	Model	Max temp. (°C)	Max continuous operating temperature (°C)	Dimensions: heated length (mm)	Dimensions: maximum outer Ø accessory tube (mm)	Dimensions: external furnace H x W x D (mm)	Dimensions: control box H x W x D (mm)	Thermo- couple	Max power (W)
124296	HZS 13/110/600	1300	1250	End zones = 180 Centre zone = 180	110	910 × 1000 × 860	225 x 570 x 380	Type R	9000
726853	HZS 15/60/600	1500	1400	End zones = 200 Centre zone = 200	60	1000 × 1680 × 940	620 x 600 x 500	Type R	10000
120101	HZS 16/110/900	1600	1500	End zones = 300 Centre zone = 300	110	1500 × 1200 × 760	Integrated into furnace	Type R	12000

Batch rotating tube furnaces

The batch rotating tube furnaces, or rotary reactor furnaces, contain the material being processed in a vessel which is rotated or oscillated whilst atmosphere gases flow through. In addition to constant agitation, the movement exposes powdered or granular material to the atmosphere that is present in the vessel. This reduces the reaction times compared with those achieved in a chamber or tube furnace, with a static material.

The quartz glass or metallic vessels can be easily removed for loading and unloading of the material being processed. Agitation and mixing of the material is aided by the incorporation of flutes (quartz vessels) or 'flights' (metallic vessels) on the inner surface of the vessel.

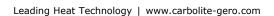
Continuous rotating tube furnaces

The continuous rotating tube furnaces contain the material being processed within a rotating tube whilst atmosphere gases flow through. Material is fed in at one end of the work tube via a screw or vibration feeder, or a combination of the two. In addition to rotating the work tube it is set at a slight incline which causes the material to move or flow along the work tube. 'Flights' can be attached to the inner surface of the work tube to agitate the material, the movement expos-

ing powdered or granular material to the atmosphere that is present in the work tube. The rate of material flow through the tube is adjusted by both rotation speed and inclination angle. The processed material is collected at the exit of the work tube into a stainless steel or quartz collection vessel. Rotating tube furnaces not only reduce the reaction times that would be achieved with a static material in a batch furnace but also offer the advantages of a continuous process.

HTR 6/100/350 rotary reactor tube furnace with stainless steel reaction vessel

A modified rotary reactor furnace used for research into reactions and catalysts for lithium chemistry. It differs from the standard HTR furnaces in that it has a metallic reaction vessel with continuous rotation.


- 304 grade stainless steel reaction vessels with four inner flutes
- Positive pressure digital display

- Pressure relief valve
- · Gas inlets for argon and hydrocarbon
- · Reaction vessel easily removed for loading and unloading
- 1 to 8 revolutions per minute with speed controller
- Vessel rotation stops when the chamber lid is opened
- Gas sealed system to maintain atmosphere inside the vessel
- Process gas enters and exits the vessel though rotary gas seals

Technical data

Ref No.	Max temp. (°C)	Max continuous operating temperature (°C)	Dimensions: heated length (mm)	Dimensions: Reaction chamber capacity (ml)	Dimensions: Reaction chamber inner Ø x length (mm)	Dimensions: external H x W x D (mm)	Thermo- couple	Max power (W)
709809	600	600	350	200	100 x 350	545 × 1710 × 685	Туре К	4900

STF 16/610 high temperature single zone tube furnace with rotating and tilting mechanism

This rotating tube furnace is used by the customer for catalyst research and simulates a manufacturing process. It uses a standard STF tube furnace.

- For processing powder or small granular materials
- · Continuous material processing
- Standard STF 16/610 furnace modified to house a rotating tube
- · Mounted on adjustable tilting frame up to
- 1 to 8 revolutions per minute with speed controller

Technical data

Ref No.	Max temp. (°C)	Max continuous operating temperature (°C)	Dimensions: heated length (mm)	Dimensions: inner Ø (mm)	Dimensions: external H x W x D (mm)	Thermocouple	Max power (W)
723640	1600	1500	610	65	1290 × 3070 × 535	Type R	7000

Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

HZS 12/75/900 with rotating and tilting mechanism

This rotating tube furnace utilises a standard split 3-zone tube furnace. It can be used for continuous processing of powder or granular materials fed from a vibratory feeder.

- IAP work tube inner Ø 75 mm 1500 mm long
- 1 to 8 revolutions per minute with speed controller • Tube rotating interlock to temperature to ensure

rotation above 150 °C to avoid tube distortion • Gas sealed system to maintain atmosphere inside

the furnace Gas inlet flowmeter

- Stainless steel inlet hopper with 5 litres capacity and a sealed lid
- Processed materials exit into a sealed stainless steel collection vessel

Technical data

Ref No.	Max temp. (°C)	Max continuous operating temperature (°C)	Dimensions: heated length (mm)	Dimensions: inner Ø (mm)	Dimensions: external H x W x D (mm)	Thermocouple	Max power (W)
700130	1200	1100	900	75	1245 × 2610 x 500	Type N	4500

2 x twin HTR 11/75 rotary reactor tube furnace – total of 4 vessels

In this custom built rotary reactor furnace two reaction vessels have been mounted next to each other in two furnaces. A pair for these furnaces are mounted one above the other to give a total of four reaction vessels. It is used in a quality control application.

- · Each furnace operated independently
- Each furnace runs with two vessels in place
- Four quartz reaction vessels with fluted inner surface

- Each reaction vessel oscillates thought 315°
- · Reaction vessel easily removed for loading and unloading
- 1 to 8 revolutions per minute with speed controller
- Vessel oscillation stops when the chamber lid is opened
- Gas sealed system to maintain atmosphere inside the vessel
- Each vessel has an independent gas inlet
- · Process gas enters and exits the quartz vessel through flexible silicone rubber tube

Technical data

Ref No.	Max temp. (°C)	Max continuous operating temperature (°C)	Dimensions: heated length (mm)	Dimensions: reaction chamber capacity (ml)	Dimensions: reaction chamber inner Ø x length (mm)	Dimensions: external H x W x D (mm)	Thermo- couple	Max power (W)
726678	1100	1000	160	50 per vessel	75 x 100	1515 x 1220 x 650	Туре К	6000

HZS 12/75/900 horizontal split 3-zone tube furnace with rotating and tilting mechanism

This custom built rotating tube furnace uses a larger diameter split tube furnace and is used for the manufacture of hydroxyapatite based synthetic bone graft materials. The screw feeder mechanism pushes material into a vibratory feeder which in turn pushes the material into a metallic work tube. The processed material is collected under an inert atmosphere.

- For processing powder or small granular materials
- Stainless steel 304 grade work tube inner Ø 120 mm 1900 mm long
- 1 to 8 revolutions per minute with speed controller
- Tube rotating interlock to temperature to ensure rotation above 150 °C to avoid tube distortion
- Gas sealed system to maintain atmosphere inside the furnace
- · Gas inlet flowmeter
- Manually operated tilting mechanism; maximum tilt of 6° from horizontal
- Stainless steel inlet hopper with 5 litres capacity and a sealed lid
- Processed materials exit into a sealed stainless steel collection vessel

Technical data

Ref No.	Max temp. (°C)	Max continuous operating temperature (°C)	Dimensions: heated length (mm)	Dimensions: inner Ø (mm)	Dimensions: external H x W x D (mm)	Thermocouple	Max power (W)
718555	700	700	1200	120	2000 × 2840 x 700	Type N	12000

HZS 12/120/1200 horizontal split 5-zone tube furnace with rotating and tilting mechanism

This custom built rotating tube furnace has a colour touch screen HMI system controller for comprehensive monitoring and data logging of system parameters including: emergency stop indication; rotation; air flow; tube angle; heating element condition; alarm status; internal pressure; and water flow.

- · For processing powder or small granular materials
- Haynes HR160 work tube inner Ø 160 mm 2600 mm long
- 1 to 30 revolutions per minute with speed controller

- Tube rotating interlock to temperature to ensure rotation above 150 °C to avoid tube distortion
- Gas sealed system to maintain atmosphere inside the furnace
- Electrically operated tilting mechanism with inclinometer; maximum tilt of 5° from horizontal

- Stainless steel inlet hopper with 25 litres capacity and a sealed lid
- Screw feeder with feed rate 5 to 30 kg per hour
- Processed materials exit into a sealed stainless steel collection vessel
- Tube water cooling with recirculation system incorporating water pump, heat exchanger, filters, and cross over valves
- · Probe thermocouples to monitor inside the work tube for testing and survey work only
- Five independently heated zones each one measuring 240 mm
- Furnace start interlocked for the following conditions: nitrogen, air and water pressure; nitrogen generator; emergency stop OK; temperature alarm OK; output valve closed; hopper fill
- Standby switch allows the operator to place the furnace in a standby mode via one single switch

Technical data

Ref No.	Max temp. (°C)	Max continuous operating temperature (°C)	Dimensions: heated length (mm)	Dimensions: inner Ø (mm)	Dimensions: external H x W x D (mm)	Thermocouple	Max power (W)
300956	1000	900	1200	160	2825 × 5380 × 1140	Type N	15000

3-zone split 13/120/1400 with rotating and tilting mechanism

This custom built rotating tube furnace has a colour touch screen HMI system controller for comprehensive monitoring and data logging of system parameters. The furnace start is interlocked for the following conditions: nitrogen, air and water pressure; nitrogen generator; emergency stop OK; temperature alarm OK; input vessel closed; output vessel closed; hopper fill and input lid closed.

- · For processing powder or small granular materials
- 120 mm inside diameter x 2150 mm long IAP work tube
- 1 to 8 revolutions per minute with speed controller
- Gas sealed system to maintain atmosphere inside the furnace
- Manually operated tilting mechanism with maximum tilt of 6° from horizontal
- Stainless steel inlet hopper with 140 litres capacity and a sealed lid
- · Screw feeder with loss in weight balance system
- Processed materials exit into a sealed stainless steel collection vessel
- Oxygen analyser 0.1ppm to 1% range
- Type R probe thermocouple with gland to monitor the exit end zone
- Three heated zones with lengths 1000 mm centre zone and 200 mm end zones

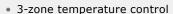
Technical data

Ref No.	Max temp. (°C)	Max continuous operating temperature (°C)	Dimensions: heated length (mm)	Dimensions: inner Ø (mm)	Dimensions: external H x W x D (mm)	Thermocouple	Max power (W)
701434	1300	1250	1400	120	3000 × 3800 × 1200	Type R	9000

Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

3-zone split 8/300/1500 with rotating and tilting mechanism

This custom built rotating tube furnace has a large 300 mm diameter metallic work tube. The material feed hopper with screw feeder is mounted on wheels and rails so it can be quickly withdrawn from the furnace.


- For processing powder or small granular materials
- Continuous material processing
- Mounted on adjustable tilting frame; up to 3°

 Screw feeder is retractable for temperature protection

 A positive drive gives a variable tube speed of 5 – 14 rpm

Technical data

Ref No.	Max temp. (°C)	Max continuous operating temperature (°C)	Dimensions: heated length (mm)	Dimensions: inner Ø (mm)	Dimensions: external H x W x D (mm)	Thermocouple	Max power (W)
724096	850	800	1500	300	2950 × 4000 × 1200	Type N	90000

Examples of custom designed vacuum chamber furnace solutions

Vacuum Chamber Furnaces –
Custom Built Examples

GLO 120/09-2G up to 900°C, with loading fork lift

71

GLO 120/11-3G up to 1100°C with special drawer door

HBO 60 MO/13 -5G up to 1300°C with special humidifier

72

LHTG 100-200/16 with sample charging

73

HTK 25 MO/16-1G with attached glovebox

73

HTK 600 GR/16-1G up to 1600°C for debinding and sintering

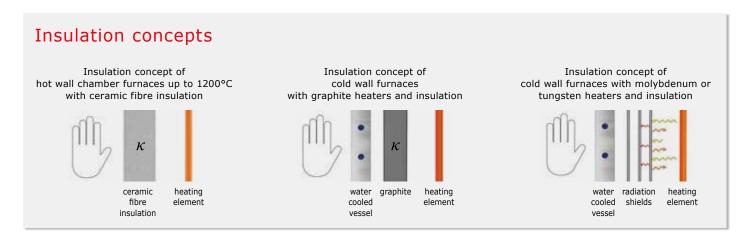
73

HTBL 400-300/11-2G up to 1100°C

74

High pressure furnace LHTG 200-300/18-1G up to 1800°C at 100 bar

Vacuum Chamber Furnaces up to 3000°C


Carbolite Gero defines vacuum chamber furnaces as furnaces that are tightly sealed with a useable space larger than a common tube furnace.

Vacuum chamber furnaces in hot wall design are limited up to 1200°C due the retort materials lack of stability at higher temperatures.

Cold wall vacuum chamber furnaces are equipped with a water cooled double wall stainless steel chamber sealed with rubber o-rings. Heating elements and insulation are either graphite up to 3000 °C, molybdenum up to 1600 °C or tungsten up to 2200 °C

Common vacuum chamber furnace features

- Tightly sealed chamber with leak rate below 5 x 10⁻³ mbar l/s
- Vacuum pump
- One inert gas control
- Either graphite felt insulation or metal radiation shields
- Either graphite heating element or metal heating element
- Thyristor power control
- · Control cabinet with IP class 54
- Over-temperature protection

Common vaccum furnace modifications

- Special atmosphere with dangerous and reactive gases can be modified to work with H₂, CO, CO₂, H₂S, H₂O, CH₄ or C₂H₄ with full safety features such as gas sensors, a fully automated leak test before every furnace run and emergency inert gas purge tanks. Other gases on request.
- Debinding and sintering equipment: Binder removed chemically or through heat treatment followed by the sintering process. The sintering process can be performed under oxidizing, inert, or reducing atmospheres depending on the material used. Carbolite Gero offers several debinding and sintering solutions for the MIM process. All gaseous by-products produced during debinding are combusted by the integrated afterburner.
- Ultra-high vacuum heat treatment: Atmospheric change is required for all heat treatment processes where oxidation is unacceptable. For lower quality demands a simple vacuum pump can be used. For fine vacuum

- levels, pre-pumps are combined with roots pumps. For high vacuum operation, additional turbomolecular pumps are used. Vacuum in the range 5 x $10^{\text{-}5}$ mbar to 5 x $10^{\text{-}6}$ mbar or better can be achieved.
- Partial pressure control: Gas is introduced into the furnace chamber at a constant flow controlled by the mass flow controller. At a specified furnace pressure, e.g. 80 mbar, a PID controlled regulating valve opens and gases are sucked out of the furnace to achieve the target pressure.
- Fast cooling: The fast cooling system removes hot process gas from the unit, cools the gas via a heat exchanger, and pumps the cooled gas back into the furnace.
- Glove box: Customized glove box furnace systems for tube furnaces up to 1800°C and chamber furnaces up to 3000°C. The size of the glove box, the number and size of the air locks and the number of gloves suit the customer's requirements.

Hot wall vacuum chamber furnace GLO 120/09-2G up to 900 °C, with loading fork lift for heavy loads, and custom designed loading rack

This GLO furnace has been optimised for the debinding and pre-sintering of MIM parts up to 900 °C under Argon, Hydrogen, or a mixture of those gases, for mass production. The machine tower light indicates the furnace status to assist optimisation of furnace cycle time, and facilitate higher throughput.

- FeCrAl heaters and fibre insulation around a 1.4841 stainless steel vessel
- 3 heating zones with two cascade controls
- S7-300 PLC with 19inch WinCC touch panel

Control cabinet with IP class 54
 2 mass flow controllers for Argon gas and H

2 mass flow controllers for Argon gas and Hydrogen gas control

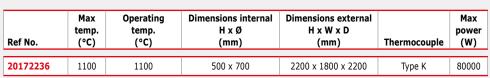
Technical data

Ref No.	Max temp. (°C)	Operating temp. (°C)	Dimensions internal H x Ø (mm)	Dimensions external H x W x D (mm)	Thermocouple	Max power (W)
20172235	900	900	500 x 700	2800 x 1800 x 2200	Type K	50000

Hot wall vacuum chamber furnace GLO 120/11-3G up to 1100 °C with special drawer door and custom designed loading rack

This GLO furnace has been optimised for the debinding and pre-sintering of MIM parts up to 1100°C under Argon, Nitrogen, Hydrogen, or a mixture of those gases, for research and development. The specially designed door allows for convenient load placement.

 FeCrAl heaters and fibre insulation around a 1.4841 stainless steel vessel


- 3 heating zones, with two cascade controls
- S7-300 PLC with 19 inch TP1900 touch panel

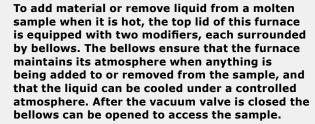
 3 mass flow controllers for both inert gas, and hydrogen gas control

Cold wall vacuum chamber furnace HBO 60 MO/13 -5G up to 1300 °C with special humidifier

This design features a custom top hat / hood furnace with molybdenum heaters and radiation shields. Lower maximum temperature and fewer radiation shields for a faster cool down. It also includes a special humidifier for controlling the concentration of water in both inert gas and hydrogen gas.

- Molybdenum heaters and molybdenum radiations shields as insulation
- 3 heating zones
- S7-300 PLC with 19 inch WinCC touch panel

- · Control cabinet with IP class 54
- 5 mass flow controllers for inert gas, and hydrogen gas control
- **‡**
- SIL2 hydrogen gas safety with glow stick afterburner


Technical data

Ref No.	Max temp. (°C)	Operating temp. (°C)	Dimensions internal H x Ø (mm)	Dimensions external H x W x D (mm)	Thermocouple	Max power (W)
20160058	1300	1300	400 x 500	3100 x 2200 x 2600	Type S	84000

LHTG 100-200/16 with sample charging during heat treatment

- Graphite insulated and heated furnace
- Sample thermocouple
- S7-300 Programmable Logic Controller (PLC) with 19 inch touch panel
- Gases are controlled by mass flow controllers
- 2 stage rotary pump
- Gas humidifier

See Arrival and the second sec

Ref No.	Max temp. (°C)	Operating temp. (°C)	Dimensions internal H x Ø (mm)	Dimensions external H x W x D (mm)	Thermocouple	Max power (W)
20160476	1600	1600	100 x 200	2200 x 2500 x 1600	Type S	26000

Cold wall vacuum furnace HTK 25 MO/16-1G with attached glovebox. For use up to 1600 °C for debinding and sintering in both inert gas and high vacuum atmospheres

This metallic HTK type furnace is equipped with a turbomolecular pumping station to enable a high vacuum range to be maintained while the chamber is heated up to 1600 °C. Prior to sintering, a thermal debinding step can be carried out at atmospheric pressure and the resulting gases can be burnt-off with an active torch. The adapted glovebox enables oxygen sensitive samples, such as powder-pressed hard magnetic samples, to be loaded and unloaded in a fully inert atmosphere. Gloveboxes can be adapted for several furnaces.

- · Molybdenum heating elements and insulation
- · One heating zone
- Fan for improved uniformity at low temperatures

Technical data

Ref No.	Max temp. (°C)	Operating temp. (°C)	Dimensions internal H x W x D (mm)	Dimensions external H x W x D (mm)	Thermocouple	Max power (W)
20172582	1600	1600	230 x 230 x 400	2200 x 1900 x 1800	Type C	80000

Cold wall vacuum furnace HTK 600 GR/16-1G up to 1600 °C for the debinding and sintering of hard metals in a fine vacuum atmosphere

This HTK type furnace is equipped with a pumping station and a condensate trap to enable vacuum debinding and vacuum sintering up to 1600°C. The binder is collected in the condensate trap, and released after the heat treatment; this operation is fully automated. This equipment is suited for the debinding and sintering of hard metals such as Tungsten Carbide.

- Graphite heating elements and graphite insulation
- Three individual heating zones for +-7K uniformity
- Type C thermocouples for temperature control

Argon gas supply

Technical data

Ref No.	Max temp. (°C)	Operating temp. (°C)	Dimensions internal H x Ø (mm)	Dimensions external H x W x D (mm)	Thermocouple	Max power (W)
20171432	1600	1600	630 x 730 x 1200	2500 x 2500 x 2900	Type C	300000

(i) Please note: Uniformity – empty chamber in steady state conditions after a stabilisation period

Hot wall furnace HTBL 400-300/11-2G up to 1100 °C under atmospheric pressure of up to 100% hydrogen

This furnace consists of an Inconel retort which can be constantly kept at 1100 °C. A water-cooled transfer system enables the loading and unloading of samples into and out of the hot furnace. After closing the transfer system the retort is purged with an inert gas to remove oxygen. Once the oxygen is removed hydrogen gas is allowed to flow into the retort. The motor is started to slowly elevate the samples into the hot furnace; it takes approximately 1.5 hours to both load and unload the samples. This is a typical process for the infiltration of copper into tungsten.

- Inconel retort furnace heated from outside
- Three heating zones
- Type K thermocouples for temperature control

Technical data

Ref No.	Max temp. (°C)	Operating temp. (°C)	Dimensions internal H x Ø (mm)	Dimensions external H x W x D (mm)	Thermocouple	Max power (W)
20172583	1100	1100	400 x 300	1500 x 4000 x 1700	Type K	100000

Cold wall high pressure furnace LHTG 200-300/18-1G up to 1800 °C in vacuum or at high pressure up to 100 bar

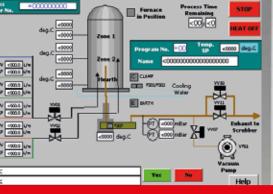
This LHTG type furnace has been modified for high pressure sintering. The bayoneted closing system is automatically lifted for loading and unloading the samples, and turns to securely lock the furnace for high pressure applications.

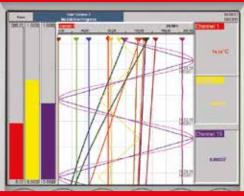
- Graphite heating elements and graphite insulation
- · Single heating zone
- Temperature control by means of a sliding thermocouple at low temperatures
- Temperature control by a pyrometer for high temperatures
- Siemens KP300 control panel with touch buttons for semi-automatic operation
- Eurotherm controllers for temperature and pressure control
- · Argon gas supply

- Double-stage rotary vane pump
- Over-temperature protection
- Water cooled vessel

Technical data

Ref No.	Max temp. (°C)	Max. continuous temp. (°C)	Heated Dimensions Ø x H (mm)	Dimensions external H x W x D (mm)	Thermocouple	Max power (W)
20172581	1800 @ 100 bar 2400 @ 1 bar	1800 @ 100 bar 2400 @ 1 bar	200 x 300	2500 x 1800 x 1800	Type K and pyrometer	70000


Temperature & System Control


WSP

Working Output

SP

0.0%

SP1 290°C

Mode Manual

Man Op -14.90

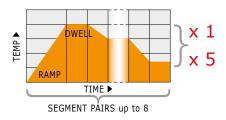
Man Op -14.9

Temperature & System Control

_		
		_
	ш	 _

All Carbolite Gero ovens and furnaces have excellent temperature control provided by a range of sophisticated digital controllers. Comprehensive data logging and connection to computers and networks is available together with remote webpage access.

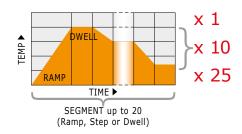
78


Programmable controllers

3216P1 & 3216P5

These controllers offer programmable control using up to 8 segment pairs, each segment comprising a ramp followed by a dwell; the dwell may be set to zero time.

The 3216P5 can also store and retrieve up to 5 separate programs.



3508P1, 3508P10 & 3508P25

These controllers offer programmable control in which 20 segments may be set as ramp, step or dwell and may also be configured to control relays or logic outputs. The 3508 series provide a comprehensive information display. If precise temperature control is required over a wide range of temperatures, the 3508 series allows the use of multiple PID terms (gain scheduling). This feature is not enabled as standard, but can be activated on request. The 3508P10 and 3508P25 can also store and retrieve 10 and 25 programs respectively.

Options

Over-temperature control

This has a variable set point to protect either the furnace, oven or the load. If the main controller is from the 3216 or 3508 series this is provided by the addition of an independent 2132 controller. Whilst all Carbolite Gero products are designed to fail safe in the event of a controller malfunction, over-temperature protection is strongly recommended for unattended operation or where valuable loads are to be processed.

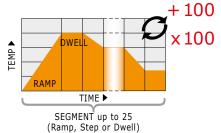
Eurotherm nanodac™

Recorder & PID controller

In this configuration the nanodac $^{\text{TM}}$ combines precision PID temperature control, with a fully functional data logger. The full colour display can be changed to display text in English, French, German, Italian or Spanish.

Data is continuously logged into either CSV (comma separated variable) or securely to UHH (Eurotherm Hydra History) files. Data can be archived onto a USB flash drive or via Ethernet to a networked server. Up to 4 channels can be recorded, with up to 14 virtual channels that can be set to record trends, alarms, communications or mathematical functions such as totals or averages.

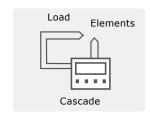
Logged files can be opened and displayed on a PC, in chart form, using Eurotherm Review Lite software.



Recorder & PID programmable controller

This controller offers programmable control in which 25 segments may be set as a ramp, step or dwell and may also be configured to control relay or logic outputs. It stores and retrieves 100 programs.

Additional programs can be saved to, and retrieved from, a networker server via a USB flash drive or Ethernet. The action of up to 3 relays, or logic outputs, can be linked to a program segment; this can be used to switch on external devices such as gas solenoid valves and audible alarms Note that some configurations may require additional components.



RS232, RS485 and Ethernet communications

- RS232 allows a single controller to communicate with a single computer
- RS485 allows multiple controllers to communicate with a single computer
- Both require, but do not include, suitable PC based software (eg iTools) and connection cables
- 301 controller RS232 is only available when ordered with over-temperature option (RS485 is not available with the 301 controller)
- 3216 and 3508 series controllers both have the option to add RS232 or RS485 communications
- Ethernet communication is supplied as standard with the nanodac[™] controller and is optional in the 3508 series

Cascade control

This features offers the benefit of precise temperature control of the load. A standard controller operates by sensing the temperature close to the elements. With cascade control the controller's operation includes a second control thermocouple, which is used to sense the temperature of the load. It is essential that the controller is a dual loop 3508 or dual loop nanodac $^{\text{TM}}$.

Calibration certificates

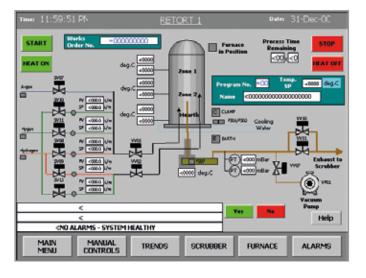
The following calibration options can be supplied, each of which is available with a certificate from a UKAS accredited laboratory, which is traceable to a UK national standard

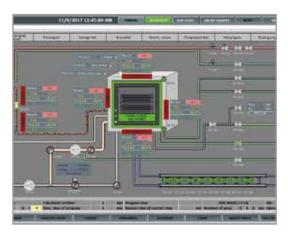
- UKAS traceable certificate for the thermocouple only, calibrated at 3 temperature points, specified by the customer
- UKAS traceable certificate for the temperature controller only, calibrated at 3 temperature points at temperatures specified by Carbolite Gero
- UKAS traceable certificate at 3 temperature points for both thermocouple & temperature controller
- For advice and specifications to comply with AMS2750E (Nadcap) for heat treatment applications, please contact Carbolite Gero

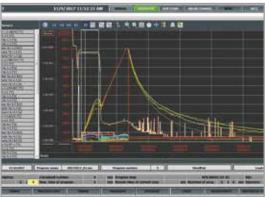
Panel mounted calibration loop

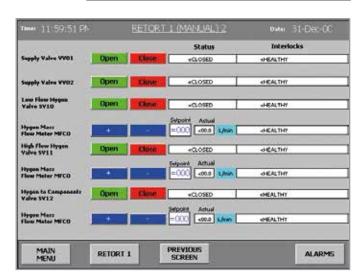
Panel mounted calibration loops can be fitted to the control panel to give easy access to the control to thermocouple connection. This can be used for on-site calibration.

Human Machine Interface (HMI) control systems


These control systems utilise a colour touch screen display with a mimic of the equipment and a number of pages for parameters setting, live graphical trending and alarm information. The HMI display is linked to the temperature controller(s) and a PLC (programmable logic control) to provide a fully integrated and sophisticated control system. All parameters required for operation are accessed via the HMI touch screen.


Examples of parameter settings available:


- Temperature
- Flow rate
- Pressure
- · Circulation fan speed
- · Cooling fan speed
- · Damper valve positioning


These control systems can be connected to computer systems via communication links which can be:

- RS232 or RS485 communication
- Ethernet communication
- Data logging access via Ethernet communication or USB memory stick
- Remote display of the control system to a PC or handheld device via an internet accessed webpage

iTools software

A versatile suite of software that allows Carbolite Gero products that have been fitted with appropriate digital communications hardware to be set-up, recorded and monitored from a PC. The supplied licence is for a single PC to communicate with one furnace using RS232 or with many furnaces using RS485. NOTE: The 301 controller is not compatible with RS485 communications.

Chart recorders & DAQs (Data acquisition devices)

This is just a small selection of the options that are available for recording data from Carbolite Gero products. If you require advice, please contact Carbolite Gero for further information. NOTE: Please confirm with Carbolite Gero whether the chart recorder required can be fitted within the standard product case; in some instances it may require mounting in a separate case.

Eurotherm nanodac™ DAQ recorder only

In this configuration the nanodac[™] can be used in combination with a conventional controller as a paperless chart recorder. Data is continuously logged into either CSV (comma separated variable) or secure UHH (Eurotherm Hydra History) files. Data can be archived onto a USB flash drive or via Ethernet to a networked server. Up to 4 channels can be recorded, with up to 14 virtual channels that can be set to record trends, alarms, communications, or mathematical functions such as totals or averages. Logged files can be opened and displayed on a PC, in chart form, using Eurotherm Review Lite software.

6100 & 6180 series digital data acquisition, recording & display

A series of digital data acquisition recorders which can function as stand-alone paperless recorders or with more advanced models can be integrated into computer networks. All have the capability to archive data via USB flash memory devices

or onto a networked server using Ethernet FTP or Modbus TCP (although the 6100E is Slave configuration only). 6100 series data recorders have a 5.5" TFT touch screen interface whilst the 6180 series data recorders have a 12.1" TFT touch screen interface.

The 6100 XIO and 6180 XIO data recorders record digital data and so must be used with controllers that are equipped with digital communications. This overcomes potential issues from the attenuation of analogue signals over distance. The 6180 AeroDAQ

is a recorder configuration that has been optimised for AMS2750E (Nadcap) applications and includes thermocouple monitoring.

Always confirm with Carbolite Gero that your preferred data recorder can be fitted within the standard furnace case, alternatively a stand-alone cabinet may be required.

The following software options are available for use with the 6100 A, 6100 XIO and 6180 series data recorders for the 6100 series (these options are not compatible with the 6100 E model):

- Batching
- Grouping
- Screen Builder
- Bridge Software

Model	Function	Channels	Display screen	On-board memory for history (Mb)	USB ports	Serial ports
nanodac	PID control & record	4	3.5" TFT & software allocated keys	50	1	0
6100E	record analogue input	3 or 6	5.5" VGA touchscreen	8	1	0
6100A	record analogue input	6, 12 or 18	5.5" VGA touchscreen	32 or 96	up to	up to 2
6180A	record analogue input	6, 12, 18, 24, 30, 36, 42 or 48	12.1" XGA touchscreen	96	up to	up to 2
6100XI0	record digital comms input	128 virtual channels	5.5" VGA touchscreen	96	1	2
6180XI0	record digital comms input	128 virtual channels	12.1" XGA touchscreen	96	1	2
6180 Aerodaq	record analogue input	6, 12, 18, 24, 30, 36, 42 or 48	12.1" XGA touchscreen	96	3	2

Ref. No.	Description	Pag
30031	AZ – eight-zone tube furnace up to 1300°C	4
49722	1800°C elevator hearth furnace	3
66067	Mesh belt oven	2
76052	Drop bottom quench oven	2
80997 85054	LGP 6/3920 general purpose oven adapted for rapid quenching Debinding & sintering furnace with retort & press	3
89263	LCF 12/540 large chamber furnace with roller hearth & 3 zone	3
03203	control	
90121	Debinding & sintering furnace with retort & press	3
101680	Four lane strand furnaces for hardening and tempering	4
106147	LGP 4/1750 general purpose oven with rotary hearth	1
117899	TZF 12/38/400 3-zone calibration tube furnace with automated loading	5
120101	High temperature split 3-zone tube furnaces	6
120737	Thermal cycling calibration furnace	3
121057	HTCR 4/232 high temperature clean room with front and back entry	2
122193	M-Range vertical split tube furnaces	6
123829	Large chamber furnace with circulation fan and loading system	3
124181	BLF 17/3 bottom loading furnace with rotary hearth	3
124296	High temperature split 3-zone tube furnaces	(
300904	GPC general purpose chamber furnace to fit into a clean room wall	3
300956	HZS 12/120/1200 horizontal split 5-zone tube furnace with rotating and tilting mechanism	(
301224	Debinding furnace with retort & forced cooling	3
302253	Split tensile test furnace with extensometer access	5
700130	HZS 12/75/900 with rotating and tilting mechanism	6
700368	Cycling corrosion test furnace with gas system	
700659	Twin bogie elevator hearth furnace	3
701434	3-zone split 13/120/1400 with rotating and tilting mechanism	6
701800	BLF 17/3 bottom loading furnace with horizontal movement hearth	3
702253	Debinding furnace with retort & forced cooling	1 3
702380	VST 12/50/150 vertical split tube furnace with element protection	
703625 704219	MTF 15/5/100 mini tube furnace with platinum alloy heating element	5
704219	LGP 6/1000 general purpose oven for sterilising & depyrogenation of bottles	,
704438	LGP 3/1500 general purpose oven for curing vacuum bagged composites	1
704766	HTMA 6/95 high temperature modified atmosphere oven with	2
704944	continuous sample weighing Eight lane strand furnace	4
705934	GP 450A general purpose oven for Nadcap compliance	
706402	ACT 13/360 air cooled calibration tube furnace	5
707008	4 x GHA 12/450 modular horizontal tube furnaces in a rack system	2
707464	HTMA high temperature modified atmosphere oven with custom	
	built dimensions	
709325	GVA 12/125/150 modular vertical chamber furnace	4
709809	HTR 6/100/350 rotary reactor tube furnace with stainless steel reaction vessel	(
709972	2 x TVS 12/90/900 vertical split 3-zone tube furnaces in tandem on a mounting frame	
711373	M-Range vertical split tube furnaces	6
711520	Split chamber furnace to fit into a hydraulic press	6
712273	PF 120 fan oven for Nadcap compliance	1
712620	HTMA high temperature modified atmosphere oven with custom built dimensions	1
715390	LCF 12/560 large chamber furnace for Nadcap compliance	3
715841	HRF 7/324 high temperature air recirculation oven with vertically opening door	2
715921	CR/450 clean room oven to fit into a clean room wall	2
717590	Top & front loading oven	2
717744	HTMA high temperature modified atmosphere oven with custom built dimensions	1
718040	LHT 5/60 with sliding tray	1
718176	HTMA high temperature modified atmosphere oven with custom built dimensions	1
718555	HZS 12/75/900 horizontal split 3-zone tube furnace with rotating	(

Ref. No.	Description	Page
720581	Triple oven system	23
720840	Split tensile test furnace with viewing windows	59
720985	Custom built GP 2/900 chamber oven	22
721091	Chamber furnace with retort to fit in a glovebox	36
721148	Top hat furnace system with twin retorts	40
723640	STF 16/610 high temperature single zone tube furnace with rotating and tilting mechanism	63
724096 724765	3-zone split 8/300/1500 with rotating and tilting mechanism LGP 2/4872 general purpose oven for drying powders with low auto ignition temperature	67 17
725426	HTMA 5/4872 high temperature modified atmosphere oven for processing powders with low auto ignition temperature	20
725426	HTMA high temperature modified atmosphere oven with custom built dimensions	19
726678	2 x twin HTR 11/75 rotary reactor tube furnace – total of 4 vessels	64
726853	High temperature split 3-zone tube furnaces	61
726887	Twin 2 x MHC 12/230/450 modular horizontal tube furnaces in a rack with gas system	49
727251	GP 450A general purpose oven with rotating mechanism	15
727262	AMS2750E mesh belt conveyor furnace	43
727311	Top loading oven with rotating headstocks	25
727591	RHF 14/35 rapid heating chamber furnace with element protection and electric door actuation 3 AMS 2750E vertical high temperature ovens with cabinet	32
727963	Retort carbonisation furnace with atmosphere gas controls	41
729734	HPLC column oven with 6 access ports	24
732340	High temperature oven for carbon fibre fabric treatment	19
733633	Large general purpose oven 2/1750 with reinforced slide-out shelves	16
733793	EST 12/38/150 split tube furnace with L stand	56
734217	16/3 bottom loading cycling furnace	33
734283	Large general purpose oven 2/1750 with electric door and loading trolley	15
734815	Bespoke assembly of 6 vertical MTF 9/25/250 tube furnaces	49
737388	High performance oven with rotating shaft	22
737533	Floor mounted 13/131 general chamber furnace	32
737621	Short form dewar flask oven	24
738316 738843	3 zone top loading furnace with retort [AMS2750E class 4, type B]	37
738843	High temperature oven for auto ignition testing Split chamber furnace with viewing windows	59
740341	Compact split tube furnace for wire drawing	56
740837	3 zone top hat furnace [AMS2750E class 4, type B]	41
744484	Fan oven with 6 letterbox doors	23
20140940	Vertical FHA 13/80/500 with manual sample movement under controlled atmosphere	51
20153171	Horizontal split tube furnace FZS 13/100/4500 for heat treatment of long metal parts	57
20160058	HBO 60 MO/13 -5G up to 1300 °C with special humidifier	72
20160476	LHTG 100-200/16 with sample charging	72
20161707	Split tube furnace FST 9/150/750 with special end insulation	57
20162213	Vertical FHA 13/50/200 with water tank for sample quenching	51
20171432 20172222	HTK 600 GR/16-1G up to 1600 °C for debinding and sintering 3 x FHA 13/80/500 tube furnaces in safety cabinet	73 52
20172222	Standard tube furnace HTRH-3 18/100/600 on custom stand with castors	48
20172226	Standard HTRH 16/100/600 tube furnace up to 1600°C, attached to an inert gas glove box for loading and unloading the furnace under an inert gas atmosphere	53
20172229	Custom made HTRV 16/100/4000 tube furnace up to 1600°C, attached to an inert gas glove box for vertical heat treatment of fibres under an inert gas atmosphere	54
20172235	GLO 120/09-2G up to 900°C, with loading fork lift	71
20172236	GLO 120/11-3G up to 1100 °C with special drawer door	71
20172238	Custom designed graphite tube furnace 3 heating zones and inert gas counter flow flanges for the heat treatment of carbon fibres up to 1800 °C	54
20172581	High pressure furnace LHTG 200-300/18-1G up to 1800 °C at 100 bar	75
20172582	HTK 25 MO/16-1G with attached glovebox	73
20172583	HTBL 400-300/11-2G up to 1100 °C	74

Sign up for our newsletter!

You will occasionally receive exclusive information on seminars/webinars, applications and product news.

Subscribe now:

www.carbolite-gero.com/newsletter

(You may unsubscribe any time)

Carbolite Gero Ltd.

Parsons Lane, Hope Hope Valley, S33 6RB

+44(0)1433 620011 Phone +44(0)1433 621198 E-Mail info@carbolite-gero.com Internet www.carbolite-gero.com

Carbolite Gero GmbH & Co. KG

Hesselbachstr. 15 75242 Neuhausen Germany

+49(0)7234 9522-0 Phone +49(0)7234 9522-66 E-Mail info@carbolite-gero.de Internet www.carbolite-gero.de Outstanding Ashing Solutions from Carbolite Gero